申请编号:

浙江省研究生教育学会

教育成果奖附件材料

□教育研究类

☑教育实践类

				科研创新与国际合作"双能共建"光电研
成	果名	称	:	究生人才培养体系构建与实践
成	果完成	人	:	刘华锋,郭敏,王晓萍,白剑,何宏建, 刘崇,陈飞燕,汪凯巍,原勉,昼马明
成	果起止时	一间	:	2003.1.1-2023.12.31
申	请 时	间	:	2024年6月23日

浙江省研究生教育学会制

目录

一、成果总结	1
二、其他相关支撑材料	8
(一)多维赋能,加强导师队伍建设	8
1. 教学相关情况	8
1.1 主要教学奖清单	8
1.2 教学论文清单	10
2. 主要科研奖清单	23
3. 主要个人荣誉清单	27
(二)强强合作,构建高质量育人新格局	29
1. 加强国际合作广度,提升教育平台质量	29
1.1 建立实体合作平台	29
1.2 互派互访,合作关系不断巩固与升级	30
1.3 联合培养研究生清单	35
1.4 联合发表论文清单	42
2.研究生在校期间主要奖励	55
(三) 凸显特色,积极服务国家文战略	64
1.毕业研究生主要奖励和荣誉	64

一、成果总结

本成果是浙江大学和世界光电知名企业(日本滨松光子学株式会社,以下称"日本滨松")在近30年的研究生教育培养实践中取得的。研究生教育肩负着高层次人才培养和创新创造的重要使命,是国家发展、社会进步的重要基石。围绕国家战略的迫切人才需求,人才培养过程中的传统交流合作必须向深度交流合作升级,并在培养目标共识、培养模式和协同机制上不断创新完善。为此,浙江大学光电科学与工程学院与日本滨松深度合作,构建了"双能共建"高质量的光电研究生人才培养体系。

在科研创新方面,强调创新为首,改革课程体系,跨学科跨地域交叉融合教育,强化实践环节;在国际合作方面,学校与企业建立合作实体,构建联培制度,共同培养研究生。充分利用一切可以利用的国际教育资源,积极借鉴和吸收世界一流大学的办学理念和人类一切先进文明成果,真正达到"它山之石,可以攻玉"的效果。

成果关于"双能共建"的人才培养模式被入选了 2012 年教育部组织的首批 21 个"高校与科研院所联合培养研究生典型案例"之一。成果应用对光电学科而言,1995 年建立浙江大学与日本滨松光子学联合实验室; 2004 年,滨松赠送所有仪器设备,成立浙江省首个医学PET中心,服务浙江省超万人。以实体为据点,由于医学PET中心所带来显著社会效益,这同样有利于保证研究生教育的改革和创新的持续性,也有利于使培养的研究生具备作风严谨、国际视野、市场意识等特点,这也使得毕业生综合素质显著提高,部分毕业生奔赴国家重点工程岗位,为国家的发展贡献力量。

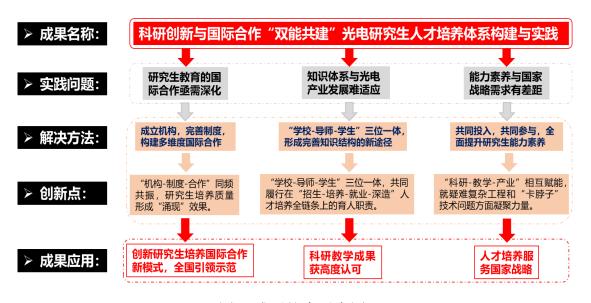


图 1 成果简介示意图

一、主要解决的研究生教育实践问题

目前,学识功底厚与技能强两者兼备的复合型高级人才供不应求,远远不能满足国家高质量发展的迫切需要,这就体现出社会经济的发展要求高等院校培养的人才,不仅要有高的学术理论水平,更重要的是要有实践能力和技术研发水平。研究生教育在实际发展中主要存在以下实践问题(具体见图 1):

1. 研究生教育的国际合作亟需深化

结合国家及学校发展需求,结合学科发展特点,需要不断拓展全球合作伙伴关系。不断深化与国内外一流大学、学术机构和国际知名企业的全球科研合作,拓展全球科技合作网络,建设跨学科的国际科研合作平台,积极参与国际大科学研究和国家级重大科学问题研究,推动和组织国际重大科技合作项目,成为发展高质量合作与交流的关键。然而,零散的国际合作模式,缺乏长期持续性的有效载体,研究生培养质量难以形成"涌现"效果。如何发展全球性、多模式、多领域的科研合作和科研实践?——这成为一个新课题。这样的合作与实践的开展将有力地支撑具有国际视野的创新型人才的培养。

2. 知识体系与光电产业的发展难适应

光电学科呈现光+X发展的特点。早在90年代,浙江大学光学工程教育就提出了光、机、电、算的理念与实践。光电涉及相关问题必

须通过多种思路、方法、手段与工具协同加以解决,因而需要由多学科人员密切协作、互相配合。在工作一段时间后,这些思路、方法、手段,甚至工具就凝结成一套特定的研究方法或范式。然而,研究生的知识体系与光电学科的未来发展匹配度上存在不足。传统的光电研究生教育培养侧重于具体方向的理论知识的传授,难以适应光电学科的发展特点,完善研究生的知识体系缺乏有效路径。

3. 能力素养与国家战略需求有差距

研究生能力素养与产业前沿存在"断"层,急需提升研究生的能力素养,拥有解决疑难复杂工程和"卡脖子"技术问题的使命要求,以满足国家战略需求。产业需求是科技创新的出发点和落脚点,面向产业前沿,需要积极构建与国际产业领军企业的战略合作,助力学生科技创新水平和国际影响力的提升。

二、解决实践问题的方法

1. 成立机构, 完善制度, 构建多维度国际合作

成立于 1953 年的日本滨松,是目前世界上科技水平最高的光科学和光产业公司之一;旗下成立于 1985 年的日本滨松中央研究所专门致力于光子学相关的基础与应用基础研究。东京大学小柴昌俊教授曾采用日本滨松 20 英寸光电倍增管进行中微子实验并获得 2002 年的诺贝尔物理学奖,2015 年采用滨松的 APD 产品的探测手段,验证了希格斯粒子存在的也获得了诺贝尔物理学奖。日本滨松每年投入销售额 15%的科研经费,其中一半投入到中央研究所,目前研究所共计研究人员约 300 人。日本滨松的产品被广泛的应用在医疗生物、高能物理、宇宙探测、精密分析等产业领域,是光产业界的领军企业。一方是世界知名的光电企业,一方是中国最有影响的光学人才培养基地与光学科研基地,在 1995年双方成立了浙江大学与日本滨松光子学联合实验室(国际光子学实验室,ZJU-Hamamatsu)。依托双方共建的联合实验室,从政策制度、实践格局、观念认识等各方面入手,建立合作机制。2004年,赠送给浙江大学价值约为 1 亿元人民币的正电子断层设备

(PET)和加速器设备,与浙江大学共同建立了中国高校第一个PET中心,也是浙江省第一个医学PET中心,滨松赠送的设备也是浙江省首台套设备。

双方通过自上而下的制度设计驱动发展,通过研究生培养的重点、方式、规划、绩效评价、调整机制等系列要素的规划,以资源等诱致性因素来激发各学院积极参与到研究生培养实践工作中来。在具体建设过程中,形成定期反馈机制,由于资源有限、竞争激烈和路径依赖,使得学生培养过程出现了执行偏差,不断完善合作制度,孕育了协同育人新机制,辐射出与美国 UCLA、NIH、哈佛大学等合作模式,构建了多维度的国际合作范式。

2. "学校-导师-学生"三位一体,形成完善知识结构的新途径

培养具有国际意识、国际交流、国际理解的博士生是研究生 教育发展的一个重要趋势。研究生教育的国际化将促使大学办学 更加开放,与外界的联系交流更加紧密,使研究生教育与人才培 养能够充分利用国际的学术环境和条件, 在国际交流的学术氛围 中得到发展。在这样的背景下,浙江大学光电科学与工程学院和日 本滨松双方约定联合培养博士研究生。以联合实验室为纽带,双 方共同设计,整合育人资源,优化课程设置,设立校企双导师制度, 形成项目制育人机制。日本滨松每年会从浙江大学招收并资助 2-3 名博士生去日本中央研究所研修一年,同一博士生,具有双方导 师,完成课题研究,回国后继续在双方导师指导下完成博士学位 论文。由于灵活地采用项目制治理、控制协调好项目制的刚性、 确定性、程序性与学生柔性、不确定性的矛盾之处,形成学校-导 师-学生之间的良性互动。浙江大学邀请日本滨松的技术专家来校 作为兼任教授或举办专题讲座, 日本滨松也会邀请浙江大学教授 过进行学术交流。双方互派互访,联合申报国家和省级科研项目, 一起合作研究解决关键技术问题。

对于高校而言,可以充分利用企业的信息优势,包括产业需求信息、卡脖子技术日方发展的情况等,并以此来确定或及时调

整专业设置、培养目标,培养出真正适应社会经济发展需要的高素质、强技能的人才,以及学生的创新意识和创业精神。企业聚集着一大批生产、服务第一线的实用型技术人才,市场需求,新工艺、新技术,正是通过他们聪明的大脑、灵巧的双手才转化为新产品,这可以弥补学校教育实践不足的缺陷。

此项工作也入选了 2012 年教育部组织的首批 21 个"高校与科研院所联合培养研究生典型案例"之一。

3. 共同投入, 共同参与, 全面提升研究生能力素养

双方建立深度合作关系,建立多个研究生实践基地,依托产业前沿教书育人。根据光电领域的最新发展和技术趋势,动态调整课程设置和教学内容,确保教学内容的时效性和前瞻性,满足行业发展的实际需求。鼓励学生参与具有光电前沿特点的项目设计,通过研究型学习和创新实验的建设,为学生提供自主探索和实践的机会。同时,通过多元化的评价体系,激励学生在科研创新中发挥主动性和创造性。通过与滨松集团的合作,将最新的行业需求和技术动态引入教学和研究中,使学生能够及时了解和掌握光电领域的前沿信息,提高学生的实践能力和竞争力。不仅注重学生的学术研究能力,还关注其职业素养和社会责任感的培养。

本项目强化国际合作、科研创新、国家需求、学生自我成长等各种驱动力,实现研究生培养过程中各方力量的深度融合与高效协同,推动研究生自身创新力与竞争力的不断创生。

三、成果主要创新点

- 1. "机构-制度-合作"同频共振,研究生培养质量形成"涌现"效果: 浙江大学与日本滨松成立了光子学联合实验室,形成定期反馈机制,并不断完善合作制度,努力构建多维度的国际合作模式。该合作模式具有长期持续性的实际载体,使得研究生培养质量形成"涌现"效果。
- 2. "学校-导师-学生"三位一体,共同履行在"招生-培养-就业-深造"人才培养全链条上的育人职责:提出并实施"双能共建"

的人才培养模式,浙江大学与日本滨松共同设计,整合育人资源,优化课程设置,设立校企双导师制度,形成多种育人机制,使得研究生的知识体系与光电产业的发展相适应。

3. "科研-教学-产业"相互赋能,就疑难复杂工程和"卡脖子" 技术问题方面凝聚力量:与滨松集团合作,强化国际合作、科研创新、 国家需求、学生自我成长等各种驱动力,全面提升学生的能力素养, 使研究生能力素养满足国家战略需求。

四、成果推广应用及贡献

1. 创新研究生培养国际合作新模式,全国引领示范

所提出并实施的"双能共建"人才培养模式,入选为 2012 年教育部组织的首批 21 个"高校与科研院所联合培养研究生典型案例"。完成教育部教指委等教改项目 10 余项,发表教学论文 20 余篇。日本滨松赠送近 1 亿元仪器设备,2004 年成立浙江省第一个 PET 中心,服务浙江省一万余人,带来显著社会效益。双方依托联合实验室培养的研究生 100 余名,部分奋战在重大工程的关键岗位。

2. 科研教学成果获高度认可

获得的科研教学成果有:浙江省教学成果一等奖2项,浙江省高校第八届青年教师教学技能竞赛特等奖1项,浙江省三八红旗手、浙江省级优秀教师等;省部级科技进步二等奖3项等;双方合作发表论文近80篇。研究生主导联合发表Nature、Nature Biotech、Nature Methods论文多篇,研究成果得到十几家中外媒体的报道;正面引用的文章发表在包括1篇Science、7篇Nature、50多篇Nature 子刊上,引用人员来自于2名诺贝尔奖得主,几十位中、美、欧洲国家的院士。获得过美国显微镜协会颁发的显微成像技术创新奖,IEEE fully 3D的Women in Medical Imaging 奖项。1次获国家自然科学基金杰出青年基金支持,2人获国家优青支持。

3. 人才培养服务国家战略

研究生在校期间,获得国家奖学金 18 人: 王毅(刘崇)、王佳(白剑)、胡映天(王晓萍)、文一章(王晓萍)、庞凯(王晓萍)、程瑞琦

(汪凯巍)、陈浩(汪凯巍)、杨恺伦(汪凯巍)、林书妃(汪凯巍)、 李华兵(汪凯巍)、鲍宇涵(汪凯巍)等;获得浙江省奖励 12 人;胡 映天(王晓萍)、文一章(王晓萍)、 王彬宇等; 获得国际学术会议奖 16 人: 崔佳楠(刘华锋)、穆礼德(刘华锋)、王博(刘华锋)、徐鹏 程(刘华锋)、刘之源(刘华锋)、胡映天(王晓萍)等:校友获得国 家杰青、国家优青等。校友中涌现出一大批总工级人才,工作在中国 工程物理研究院、高能物理所、电子部 32 所等关键的岗位上,也有 校友获得国家市场监管总局科技创新青年拔尖人才、浙江省市场监管 系统学科带头人、浙江省"万人计划"科技领军人才等人才称号。研 究生(含毕业)作为完成人获国家及省部级科技奖励多项,包括国家 的科学技术进步奖、浙江省的科学奖等:陈舒杭(刘华锋)——工程 硕士实习实践优秀成果获得者;林桢(王晓萍)——浙江省科技进步 奖三等奖、浙江省能耗双控工作成绩突出个人通报表扬; 张冰(王晓 萍)——教育部科学技术进步奖二等奖;文一章(王晓萍)——中国 仪器仪表学会教育教学成果奖:卢乾波(白剑)——中国发明协会一 等奖、中国航空学会科学技术二等奖;叶必卿(刘崇)——浙江省科 技进步二等奖:潘孙强(刘崇)——浙江省科技进步三等奖、中纺联 科科技进步二等奖浙江省市场监管系统学科带头人:陈哲敏(刘崇) ——省科技进步奖(2项);等等。

二、其他相关支撑材料

(一) 多维赋能,加强导师队伍建设

- 1. 教学相关情况
- 1.1 主要教学奖清单
- 王晓萍-浙江省教学成果一等奖(2项)

● 汪凯巍-浙江省高校第八届青年教师教学技能竞赛特等奖

● 白剑、汪凯巍-第七届全国大学生光电设计竞赛一等奖金奖(优秀 指导教师)

● 汪凯巍-第八届全国大学生光电设计竞赛优秀指导教师

1.2 教学论文清单

序号	教学论文名称
1	"基于项目学习和实践"的课程改革创新与实践
2	"嵌入式系统"课程教学与实践探讨
3	"微机系统及应用"课程教学方法的探索与实践
4	"以课堂为主向课内外结合转变"的教学方法改革
5	"以学生为中心"的教法、学法、考法改革与实践
6	《微机原理与接口技术》实验教学探索
7	概论型实习课程的设计构建与优化探索
8	工学与医学跨学科交叉培养模式的探索与实践
9	构建先进实验平台,适应系列课程实践教学需求
10	构建以效果和能力培养为主导的实验教学模式
11	国外大学光电工程专业课程教学模式的调查与分析
12	基于项目学习和实践的课程改革创新探索
13	课程实验在工程创新人才培养中的作用及实践探索
14	世界著名大学光电类实验课成绩评价体系初探
15	提高大学生科研训练计划水平的研讨
16	微机原理与接口技术实践教学过程和内容的改革与探索
17	虚实结合、层次培养的多元实践教学探索
18	以学生为中心的课程改革与实践
19	自构建光纤链路的 OTDR 测试实验及教学实践
20	联盟视角下的高等院校与科研院所研究生协同培养模式优
20	化研究
21	研究型大学本科专业培养方案的制订依据与分析——信息
21	工程(光电)本科专业培养方案分析
22	大学生光电设计竞赛的组织工作研究
22	光电信息工程专业课程设置与工业人才职业需求匹配度的
23	研究
24	第一届全国大学生光电设计竞赛侧记

● 教学论文首页如下:

"基于项目学习和实践"的课程改革创新与实践*

王立强、杜立辉、王晓萍 浙江大学现代光学仪器国家重点实验室 杭州 310027

摘要: 微机系统是浙大光电系的主干课程之一, 该课程的特点是知识点多、理论 性强、难度大, 很多学生难以对知识有透彻的理解, 未能形成系统的知识构架。 微机系统不仅强调理论学习, 而且对实践有比较高的要求。传统的教学方法和教 学模式难以胜任本课程的教学实践要求。因此,本文提出一种基于项目的学习和 实践的课程改革方案,详细阐述了该方法在微机系统教学中的教学内容、实施方 法和实施效果,是对新形势下教学改革的有益尝试。

关键字: 微机系统,项目学习,课程改革

《微机系统设计与应用》的教学目的是培养学生如何将已学的微机原理知识 应用于面向实际工程应用需求的科研项目的能力, 如何促进学生的创新能力开 发。传统的教学方法和模式很难满足本课程教学的需要,因此我们尝试采用基于 项目的教学方法,根据学生的兴趣、爱好和特长,结合光电系的有关科研项目, 让学生主动运用所学知识解决实际问题。

1 课程改革

1.1 基于项目的学习和实践

基于项目的学习和实践是以学习并应用课程的基本原理为核心,以培养学生 自主学习和创新能力为目的,在一定时间内围绕解决一个实际的问题的探究性学 习模式。它的主旨是让学生的学习与实践融入到项目任务的完成过程中,让学生 积极地主动学习,完成课程知识的建构,并在这过程中培养学生的创新意识、创 新精神和创新能力,以及规范、守时、团队协作等各项综合素质,培养学生运用 所学知识解决实际问题的能力。而我们对于课程学习的评价则更着重于学习和实 践的过程,并非只看重学习最后的结果[1][2]。

基于项目的学习方法已经有不少人对其进行研究,并运用在一些实践性较强 的课程的教学中,如在模拟电子技术课程[3],数字电子技术课程[4],计算机课 程151中,均取得了不错的效果。我们在借鉴前人经验的基础上提出改进,并运 用于《微机系统设计与应用》的实验课程中,取得了预期的效果。 1.2 目的和意义

如何行之有效地培养大学生的创新能力是我国高等教育长期以来面临的重 大挑战之一, 然而, 直至现在, 大部分微机课程的教学工作仍主要依照课本、遵

循实验指导书的内容进行,造成实验课程体系验证性实验过多,综合性、启发性 实验不够, 更不要说培养学生的创新能力了。

国家一直强调企业是创新的源头, 究其原因, 是因为企业的产品与服务直接 面向社会需求。同样, 浙大学生也可以看做是浙大培育的产品, 要使浙大的学生 具备创新能力,那么在教学上也应该直接面向社会需求,浙大是研究型大学,因 此,科研项目与课题就是社会对浙大的要求,我们必须在教学和实验环节中,把 中国大学教学 2009年第5期

"嵌入式系统"课程教学与实践探讨

梁宜勇 王晓萍 赵文义 刘玉玲 王立强

摘 要:"嵌入式系统"是较新兴的课程,在理论与实践教学上正处于不断的成熟中。在理论教学中, 通过引入比较式教学,使学生得以更好地理解和吸收新知识: 在教学内容上可以灵活地根据教学目标进行 裁剪, 当学时数有限时, 教学深度与广度上宜适度收敛; 实践内容要反映递进式教学特点, 同时避免实验 内容的高级单片机化; 在与专业结合方面,应努力将专业特点融入嵌入式系统课程的教学中去。

关键词: 嵌入式系统; 比较式教学; 教学内容裁剪; 递进式实践环节; 专业融合

"嵌入式系统"课程是"徽机原理"课程的后续课程, 识地会用已学的徽机课程知识作比较性理解。比如: 嵌 范,这是因为"微机原理"课程已有几十年的发展,而 系统有中断,嵌入式系统则有类似的概念但称为异常; (知识、能力、素质) 并重、"宽专交"并行的人才培养 解、记忆和深入学习是非常有益的。 理念,也开始引入"嵌入式系统"这门课程,使光电专 业本科的学生在徽机类课程的发展和光电知识的交叉上 生快速适应和接受"嵌入式系统"这门新课程。 更进一步。为了更好地贯彻"教学服务于学生"的宗旨、 我们对"嵌入式系统"课程进行了初步的探索和研究, 以期起到抛砖引玉的作用。

一、比较式教学方法

"嵌入式系统"与"微机原理"课程一脉相承,却有 一定的区别。就处理器而言,一般前者洗 ARM 处理器, 后者选 MCS-51 单片机, 二者在体系结构上有较大差别, 入式操作系统作为主讲内容: 有些则以某流行嵌入式处 如支持的数据类型、寄存器组织、处理器模式、寻址方 理器为中心,进行应用性讲解。众多的内容取向表现为 式及指令集等;在软件上,"嵌入式系统"课程一般要讨 相应的教材也是五花八门,和"微机原理"教材相比, 论操作系统以及复杂的启动程序问题,而"微机原理" 课程则不涉及操作系统或启动程序问题; 在硬件上, 嵌 入式处理器芯片的功能强大,接口、外设众多,导致出 现数百个客存器, 是单片机所不能相比的。

因此在教学上可以采用比较式教学法。

课程,这在许多已开设或即将开设帐人式系统类课程的 内容确会显得过于广泛和深入。在实际的理论教学中, 专业中基本能保证。已修过徵机原理类课程的学生,对 为了既能达到教学目标又能获得良好的教学效果,在教 備机如 51 单片机的体系结构、软硬件模型有清晰的认识 学内容的广度和深度上作活度收敛是必要的。在教学内 和轮廓感, 在学习类似的"嵌入式系统"课程时, 下意 容上, 各个专业可以根据自己的教学目标及给定的课时

梁宜勇,浙江大学信息科学与工程学院副教授。

在教学、实验、教材等方面,后者比前者更为成熟和规 入式处理器的寻址方式和 51 单片机相比是交叉的; 51 "嵌入式系统"课程则是较新兴的课程。由于社会和专业 51 指令集是变长的,但嵌入式体系如 ARM 指令集是等 的双重需要,许多学校的理工专业陆续开设了这门课程。 长的。这些具有比较性的问题不仅学生会思考, 教师在 浙江大学的光电专业本科,本者贯彻浙江大学"KAQ" 教学时更应主动提及并作出比较性解释,这对学生的理

我们在教学中发现,适当的比较性讲解,有利于学

二、教学内容的裁剪

如上所提,"嵌入式系统"课程没有"微机原理"课 程成熟和规范,这使各个学校、各个专业在教学内容的 取舍上并不统一,而且相差很大。有些学校或专业注重 概念讲解,偏向于基础性的入门教学:有些则把重点放 在体系结构这一块, 不讲具体嵌入式芯片, 有些则把嵌 寻找一本合适的符合教学目标的嵌入式系统教材并不容 易。另外,不同的内容取向也会导致不同的教学深度。

在我们具有试验性的选修课教学中,学生反映学习 难度太大。这一方面是课程设置的学时偏心, 理论课时 尽管如此,二者仍有许多共性的和相互联系的地方, 为24学时,另一方面是由于学习内容太多且部分内容讲 解太深。在该选修课中,内容涉及 ARM 体系结构、程 比较式教学法的前提是学生已经修读过微机原理类 序设计、ARM9 芯片、操作系统四大块, 当面面俱到时,

36

^{*}基金项目: 浙江大学研究生院资助项目(2010-37), 浙江大学校级实验教学研究资助项目(E09050), 浙 江大学光电信息工程学系资助项目(ZDGD2009-8)。

Vol. 34 Suppl. Dec. 2008

文章编号, 1002-1582(2008)S-0259-02

"微机系统及应用"课程教学方法的探索与实践

刘玉玲, 王晓萍, 刘向东, 刘旭

(浙江大学 光电信息工程学系, 杭州 310027)

摘 要,介绍了在"微机系统及应用"教学过程中理论与实践紧密结合的教学方法。课程的实验环节采用了由浅到 深、由分立到综合的分层次方法。对课程教学效果及存在的不足进行了探讨。

关键词,微机系统;教学方法;实验环节;课程评价

中图分类号: G642 文献标识码: A

Research and practice on the teaching method of "Micro-computer Control Unit and It's Application'

LIU Yu-ling, WANG Xiao-ping, LIU Xiang-dong, LIU Xu

(Department of Optical Information Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: The teaching methods adopted in "Micro-computer Control Unit and It's Application" curriculum are discussed. In class teaching, theory is taught related with practice closely. In the practice ability training process, students do experiments from easy to advanced, from independent experiments to synthetic experiments. And also the grading ruler of this class is introduced. The effects and defects of the teaching methods are discussed.

Key words; micro-computer control unit; teaching method; experimental process; grading

1 引 言

关系,在实际教学过程中,只能简单的涉及系统的扩展,如采 用并行技术的 A/D、D/A 扩展等, 对于目前发展迅速的串行 接口扩展技术: 如 I2C、SPI、1-wire、USB 总线等技术, 均无法 涉及。而目前随着半导体技术的发展,晶体管尺寸越来越小, 运行速度越来越快,所需要的电压也越来越低。现有的并行 接口的信号电压相对较高,这就限制了处理并行信号的集成 电路应用最新半导体技术,从而导致生成成本无法随之降低。 现有的串行接口则更加适应新的半导体技术发展的趋势。从 目前越来越多的芯片采用串行接口技术也说明了这个问题。 如何在学生良好掌握微机原理基础知识的基础之上,结合信 息工程(光电)专业特色,进行微处理机系统的设计与开发的 教学,对于培养实践能力强的创新型人才是"微机系统与应 用"课程的着重需要考虑的问题。

2 教学手段与实践

"微机系统及应用"课程是一门实践性很强的课程,在开 展教学讨程中, 理论教学和实践环节紧密结合, 既考虑理论课 程的基石作用,同时允分利用课程考核评价方法的杠杆作用, 个方面介绍课程教学的开展。

在课程总体内容安排上,以目前应用广泛的接口扩展技 术为重占,同时介绍微处理机系统的效,硬件设计步骤及原 "徽机系统及应用"是继"徽机原理与接口技术"之后侧重则,CS1编程语言及程序设计,并介绍微机系统开发设计过程 于微机系统的设计与应用的课程。在"微机原理与接口技术" 中所要考虑的可靠性设计等方面的问题。微处理机系统的设 课程中,以 MCS-51 单片机为例, 着重讲述了微处理机系统的 计与研究除基本原理外, 和器件的选择和使用是密不可分的, 系统组成和工作原理、汇编语言编程及接口技术, 但因学时的 但是对于器件的特件参数, 过多强调学生容易迷茫, 不仔细强 调,则往往会因对器件了解的不透彻导致开发失败,因此在课 堂教学中,在讲解某种技术的工作原理时,更重要的是强调每 一种技术的核心部分。如在串行扩展技术中,时序是非常重 要的概念,正确的时序是保证系统正确工作的基础,但对于使 用同一种技术的不同器件,其参数不尽相同。因此,在课堂理 论知识的讲解时,更多的强调其机理,而不是某一种或某一类 芯片的特定要求。教会学生选择器件的方法,如何理解其产 品说明书,如何充分利用网络资源,搜寻所需的参考资料,缩 短开发周期,提高科研开发成功的概率。

在实验环节中,采用由浅到深、由分立到综合的分层次进 行的实践教学方法;采用验证性实验为辅,设计性实验为主的 模式。在课程内容的初期阶段,每一环节的实验内容,分成在 基本要求和能力题两个部分。基本要求中,类似于验证性实 验,主要是帮助学生理解各种总线扩展技术的基本工作原理, 根据以往经验, 学生在刚接触到与硬件系统相结合的 C51 编 程时,会无从下手,所以针对基本要求,实验指导书中会有一 个样例程序,学生在理解系统工作原理、读懂样例程序的基础 上,适当修改程序或者硬件线路的连接,就可达到基本实验要 通过实验环节调动学生的主观能动性,加强和鼓励自主创新 求的目的;能力题部分是在学生完全理解系统工作原理基础 能力的培养。下面分别就理论部分、实验环节和课程评价三 上,要求学生对硬件系统重新构建,并重新编写全部程序, 达 到完全理解系统的目的。在这个阶段,除了培养学生软件编

作者简介:刘玉玲(1969-),女,浙江省人,浙江大学光电信息工程学系副教授,博士,主要从事光电检测,智能仪器方面的研究。

27 卷23 期 2014年9月

高等教育研究学报 Journal of Higher Education Research Vol. 37, No. 3 Sep. 2014

"以课堂为主向课内外结合转变"的教学方法改革

林远芳, 王晓萍, 梁宜勇, 汪凯巍, 郑晓东 (浙江大学 光电信息工程学系,浙江 杭州 310027)

[摘 要] 为了切实提高人才培养质量,浙江大学光电信息工程学系多门本科专业课程 通过采取"设计探索性作业,引导发散思维;布置综合性作业,提高应用能力;开展项目型设 计,提升实践能力;构筑虚拟课堂,拓展教学时空"等方法,在理论教学、实践教学和教学资 源等方面开展了多项教学改革与实践,使教学从以课堂为主转变到课内外结合,受到学生的欢 迎和好评。改革所取得的富有特色的阶段性成果表明,这一转变能有效地提升大学生自主学习、 分析问题和解决问题的综合能力,同时有利于培养其创新精神和团队合作精神。

[关键词] 高等教育; 教学改革; 教学方法; 课内外结合; 自主学习 [中图分类号] G642.0 [文献标识码] A [文章编号] 1672-8874 (2014) 03-0070-05

Practice and Effect of Teaching Method Reform about Changing from Classroom - centered mode to the Combination of Classroom and Extracurricular Activities

LIN Yuan - fang, WANG Xiao - ping, LIANG Yi - yong, WANG Kai - wei, ZHENG Xiao - dong (Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: To effectively improve the quality of talent cultivation, a number of teaching reform and practice about theoretical teaching, practical teaching and teaching resources of many undergraduate courses were carried out through some methods in Dept. of Optical Engineering, Zheijang University. The methods are as follows, designing exploration work to guide divergent thinking, giving comprehensive homework to improve the ability of application, launching project design to enhance practical ability, building virtual classroom to expand teaching and learning space. As a result, teaching and learning is changed from classroom - centered mode to the combination of inside and outside classroom and extracurricular activities which is praised and favorably commented by the students. The distinctive periodical achievements of the above reform show that the transformation can effectively improve students 'autonomous learning, comprehensive ability to analyze and solve problem, also be helpful to cultivate their spirit of cooperation and innovation.

Key words: higher education; teaching reform; teaching method; the combination of classroom and extracurricular activities; autonomous study and research

「收稿日期 2014-02-28

^{*} 收稿日期: 2008-09-01 E-mail: vll @zju.edu.cn

[[]基金项目] 教育部 2010 年度国家精品课程建设项目 (2010BK234); 浙江省教育厅 2010 年省新世纪高等教育教学改革项目

⁽yb2010005); 浙江大学 2011 年度教学成果奖重点培育项目 (2011ZD-19) 及本科教学方法改革研究项目 (2011SY-6)

[[]作者简介] 林远芳(1975-),女,福建南安人,浙江大学光电信息工程学系高工,博士,研究方向:光学仿真与虚拟实验。

"以学生为中心"的教法、学法、考法改革与实践

王晓萍 刘玉玲 梁宜勇 汪凯巍 林远芳

摘 要:针对目前大学教学仍未摆脱"传授、应试"的传统教学组织模式。浙江大学光 电学院在专业核心课程中,开展"以学生为中心,以能力培养为主导"的教法、学法、考法 相结合的教学方法改革。教法改革、鼓励教师对课程教授方式开展多模式的改革和尝试:学 法改革, 促进学生开展课内外结合的自主性、研究性学习: 考法改革, 完善课程考核和评价 体系,促进学生脚踏实地、求真务实地学习和提高;"教法"改革促进了"学法"转变,"考 法"改革促进了"学风"转变。这些改革和转变,具有促进学生发展、教师提高的功能,对 于课程的教学改革具有较好的借鉴作用。

关键词: 以学生为中心; 能力培养; 教学改革; 教法; 学法; 考法

扎实、实践能力强,具有探索创新精神的大学生, 是当前高等教育面临的首要任务。大学的核心 任务是人才培养,大学教学的本质应该是"以 学生为中心、以能力培养为导向"的研究性教学, 生为本,即以培养为目的的一切教学活动要以 创导学生自主性学习和研究性学习。如何在大 学生为中心开展,所以"以学生为中心"应该 学教学中实现从"以教师为中心"向"以学生 是基于学校行为的一个教育理念。"以学生为 为中心"的转变;如何开展研究性教学,兼顾中心"不是放任学生、听从学生,其本质是教 知识传授与能力培养;如何激发学生的学习主师要开展以激发、引导为主的研究性教学,学 法、学法、考法"的教学改革,促进自主学习 标、路径、质量控制等要求的一个新的教学范式。 和研究性学习,这些是需要教学工作者思考 课题。

材施教与全面发展,把教授专业知识技能与培 更重要的是激发学生独立思考[1]。 养大学生学习能力、实践能力和创新能力结合 兴趣、挖掘学生潜能,提升人才培养质量。

推动高等学校内涵式发展,培养理论基础 一、"以学生为中心"的教学改革理念和

学生是学校培养的主体, 教学工作应以学 动性和积极性,挖掘他们的潜能;如何丌展"教 生要在教师指导下开展研究性学习,是具有日 "以学生为中心"的核心是要充分激发学生的 和研究的问题,也是高等教育教学改革的重要 内在兴趣和动力,让学生"鲜活"起来。古希 腊哲人普罗塔戈说过"人的大脑不是一个要被 浙江大学光电学院以专业课程为载体,开 填充的容器,而是一个需要点燃的火把",因 展"以学生为中心"的教法、学法、考法的课 此高校教师的职责不仅要"传道、授业、解惑", 程教学改革,教学过程强调学生自主学习、强 还要"激发"。比传道更重要的是激发学生悟道: 调教师引导和激励、强调课内外结合、强调因 比授业更重要的是激发学生学会学习;比解惑

但是, 目前我国大学教育, 特别是作为教 起来。实践证明这一改革能有效激发学生学习 与学行为重要载休的课程教学,仍未摆脱"重 知识传授、轻能力培养"的传统教学组织模式

王晓萍,浙江大学光电科学与工程学院副院长,教授。电子邮箱: xpwang@zju.edu.cn。

73

D 光盘技术

· 计算机辅助数学 ·

《微机原理与接口技术》实验教学探索

王晓萍,齐杭丽,陈惠滨

(浙江大学光电信息工程学系,浙江 杭州 310027)

摘 要:从实验系统的模块化设计、实验教学内容的改进、实验课程网络化管理、考核方式的改革等方面阐述了微机原理与接口 技术实验教学的改革思路和举措。

关键词:实验教学:实验系统:模块化设计:网络化管理:考核方式

中图分类号:G642.0

文献标识码:A

The Microcomputer Principle and Interface Technique Experiment Teaching Exploration WANG Xiao-ping, QI Hang-li,CHEN Hui-bin

(Department of Optical Engineering, Zhejiang University, Zhejiang Hangzhou 310027)

Key words: experiment teaching; experiment system; modularization design; networked management; examination mode

《徽机原理与接口技术》是计算机技术的硬件基础课程之 2.1 实验数学内容的改进 通过该课程的学习使学生从理论和实践上掌握微型计算机 的基本组成和工作原理,熟悉微机的汇编指令体系,汇编程序设 性、设计性到综合性。软件编程仿真要求学生在课外完成,涉及 计方法以及常用接口技术及其软硬件设计方法,建立微机系统 到开发系统的实验在实验室完成,使学生在有限的实验时间内 的整体概念,达到初步具有微机应用系统的软硬件设计、开发能 有很好的实验效果。 力。加强该课程的实验教学环节,能够加强理论与实践相结合,

提高学生的动于能力,有利丁学生创新思维能力的培养。本文从 实验设备的系统模块化设计,实验方式,实验的网络化管理模式 程序调试步骤和方法。 和考核方式等方面阐述实验教学的一些思路和举措。

1 实验系统的模块化设计

随着微电子技术、单片机技术和嵌入式微处理器技术的快 速发展,功能强大的芯片不断推出并得到了广泛应用,在教学内 容增加和更新的同时,与教学相配套的实验装置往往无法及时 更新换代,一定程度上影响了教与学的效果,但是实验装置要做 到与教学内容的同步更新,一方面经费不允许,另一方面势必会 造成很大的浪费。另外由于信息技术的飞速发展和学科的需要, 课程也在不断改革和创新,一些涉及新技术的内容如嵌入式单 片机和 ARM 嵌入式系统等不断地充实到新的课程体系。因此我 们构建了集成名门微机举课程实验内容的"模块化微机举课程 实验平台",既能够满足多门课程的实验要求,又避免了重复建 设造成的资源浪费,研制出"ZDGDTH-1型 80C51/C8051/嵌入式 (ARM9)/CPLD"实验开发系统。

"模块化微机类课程实验平台"采用模块化设计方法,提出 以 CPU 为核心,对基础型实验、设计型实验和综合应用型实验 的共用性进行综合和统一设计的思想,构建由一块共用的接口 富学生的知识和技能提供了良好的条件。 主板和四块不同主芯片的核心板组成的集多门微机类课程实验 于一体的"模块化微机类课程实验平台",保证了整个系统的灵 活性、先进性和前瞻性。

四块核心板为:80C51 单片机核心板;嵌入式单片机 C8051F020核心板, ARM9嵌入式处理器 3SC2410核心板, CPLD (EMP3256) 核心板。实验平台适用于"单片机导论"、"微机原理 与接口技术"、"徽机高级设计与实验"、"嵌入式系统与应用"、 随机抽取3类试题中的10个题目,测试完后网络自动打分,答 "EDA 设计技术与应用"等课程。

该系统面向理工农医文的低年级学生、高年级的专业类学 生和研究生,经过上千人近两年的使用,系统稳定可靠。

2 实验教学内容的改进及实验课程网络化管理 在改革实验教学设备的同时,我们进一步完善了实验教学 方法和与之配套的网络化管理模式。

"微机原理与接口技术"实验共16学时,实验内容从验证

具体的实验内容共8个,由浅入深,循序渐进。

字验一(基础性): 熱型 KEILμVISION2 集成调试环境, 熟型

实验二(设计性):循环、简单运算类程序设计与调试。 实验三(设计性):查表、搜索程序,子程序设计与调试。

实验四(设计性):查找关键字、求极值、乘法程序设计与调试。

实验五(设计性):并行 1/0,外部中断实验,要求掌握单片机 57 1/0 口输入、输出的方法,外部中断的应用。

实验六(设计性):定时器/计数器实验,RS232通信实验,要 求掌握定时器/计数器的定时与外部计数的应用及程序设计与调 试, 串口通信程序设计。

实验七(综合性):按键输入和 LED 数码显示实验,要求掌 握 I/O 与按键 LED 数码管的连接方式,以及按键扫描和数码显 示程序编写与调试。

实验八(综合性): A/D 转换与 D/A 转换实验, 了解 A/D, D/A 芯片与单片机的连接方法,掌握 A/D、D/A 转换程序的编写和调 试方法。

2.2 实验教学的网络化管理

实验课程教学的网络化对于提高实验效率和实验效果、丰

2.2.1 实验准入测试

实验准入测试不仅可以节约实验前老帅抽查学生预习情况 所花的时间,而且对学生实验前的预习能起到积极的督促作用。 准入测试针对每一个学生。实验前学生只有在网站上通过实验 准入测试才能取得入室做实验的资格。测试题库包括3类试题: 基础知识题, 实验装置题和实验操作题。 学生在线测试时, 题库 对 6 题以上可获得准入测试通过,学生可进入实验室做试验。

2.2.2 实验考勤和检查

为防止有的学生未做实验就提交实验报告和确保实验的效 果,每次要求学生进入实验室时在计算机上签到,不签到的学生 将无法在网上提交本次的实验报告。学生完成实验后教师根据 学生已做的实验进行检查、提问,让学生回答问题(下转第62页)

概论型实习课程的设计构建与优化探索

浙江大学海洋学院 王晓萍 张朝晖 黄豪彩 张 涛

摘 要: 浙江大学海洋学院为了让涉海学生尽早了解专业研究领域和学科发展的需求,提高文化认可度和 专业认同度、针对人才培养的特点、特为一年级学生设置了概论型实习课程。因此、本文从介绍 课程的设置初衷出发,重点探讨课程设计模型和设置特点,分析课程取得的成效以及下一步可优 化改进的方面、阐述课程的创新性和探索性、以期为国内同类型课程的设置提供借鉴价值。

关键词: 海洋学科 概论型课程 设计模型 优化改进

文章编号: ISSN2095-6711/Z01-2020-07-0164

DOI:10.16534/i.cnki.cn13-9000/g.2020.0805

分。党的十八大做出了建设海洋强国的重大部署,十九大又 境和文化氛围,越早取得情感认知的认同越有利于后期的专 提出加快建设海洋强国,为响应我国"海洋强国"战略,浙 业培养。面向海洋学院一年级学生,设置一门概论型实习课 江大学勇立潮头, 勇担在海洋领域的国家战略重任, 在东海 程是十分必要且重要, 成为概论型实习课堂的设计初衷。 之滨舟山群岛设立杭州本部外的第一个异地办学校区,海洋 二、概论型课程设计模型 学院的设置具有十分重要的战略意义,将为浙江大学创建世 界一流大学培育新的优势学科方向,成为汇聚涉海学科的重 要平台,未来学院将发展成为太平洋西岸重要的海洋科教中 本科生一年级主要学习通识课程和数理基础课程,二年级以 心,为我国海洋领域培养精英人才。为实现这一目标, 浙大 学习学科基础课程为主, 三年级主要学习专业基础和专业课 海洋学院在本科培养方案、专业课程体系、教学理念与教学 程,四年级学习一些拓展性和应用性的专业选修课程以及开 方法等方面进行了深度优化和改革,并通过课程建设和教学 展毕业设计。因此,把概论型实习课程设置在大一学习结束 改革提升教学质量。课程作为高校人才培养体系中的最基本 后的暑期短学期,用三周的时间让学生从杭州本部来到舟山 单元,是高校立德树人的重要载体,是专业建设的核心要素, 校区,走进专业、学科以及海洋,对自己的专业和海洋领域 课程支撑着人才培养目标的达成,因此课程建设是高校提高 有一个系统的了解和全面的认识。课程将成为衔接一二年级 整体教学水平和人才培养质量的重要举措。下面全面介绍海 学习的关键桥梁和连接两个校区人才培养的重要纽带。 洋学院大一学生暑期概论型实习课程的课程设计与构建,以 期为国内同类型课程设置提供思路。

一、概论型课程设置的初衷

本科培养模式,一、二年级学生在杭州本部接受通识教育,三、 计应该是启发式的、概论型的和有趣味的。课程的设计应该 四年级的学生在舟山校区接受专业培养。海洋学院建有海洋 起到四个作用。第一、热爱海洋。通过针对性地解释海洋学 科学、海洋工程与技术、港口航道与海岸工程三个本科专业, 科领域的若干问题和有趣现象,激发学生的学习兴趣。第二, 初步建立起以宽厚知识为基础,科工结合为特色,全面发展 了解海洋。通过系统性地介绍海洋学科门类和研究领域,帮 为目标的人才培养体系。但跨校区办学模式在所难免地存在 助学生构建海洋学科知识体系框架,对海洋学科有一个综合 一些不容忽视的问题,如城市规模影响、文化繁荣差异、异 认识。第三,探索海洋。通过试验环节、户外考察和出海体 地区域交通衔接、学生对跨校区学习的文化认同等因素造成 验,引导学生自主探索,锻炼学生的实践和动手能力。第四, 了通识教育阶段的学生对专业培养认识的脱节, 缺乏对自己 研究海洋, 通过介绍海洋研究的最前沿技术, 让学生接触最 所选"海洋类"专业全面系统的了解,使得学生在大二选择 先进的实验项目、仪器设备,使学生最早接触的科研活动, 专业方向时带有很大的盲目性和随机性,甚至影响了主修专形成对科学研究的初认识。因此关注学生学习体验和能力挖 业确认阶段部分优质生源的流头(离开海洋学院),不利于 掘,应该成为本课程设置的起点和基础。 人才培养的科学持续发展。海洋学院教学指导委员会经过多 次调研、走访和座谈,认为从学生培养角度,应该让学生尽 早对木米专业有一个清楚的认识和深入的丁解。从学科专业 由近 40 名教师组成的课程组,教师队伍中高端人才占比 角度,应该让学生尽早地了解专业相关研究领域以及学院的 40%,教授占比60%,《海洋科学概论》课程的师生比达到 研究方向和特色、师资力量,尽早接触科学实验、科学仪器, 1:2,优质的师资团队为课程组进行课程设计、开发课程 有利于帮助学生寻找学习兴趣点,从而降低学生在选择专业 教学内容奠定了基础。这在某种程度上保证了课程知识体系 时的盲目性,帮助学生有针对性地选择专业甚至科研方向。 的系统性、完备性、应用性和前瞻性。

建设海洋强国是中国特色社会主义事业的重要组成部 从大学治理的角度,应该让学生尽早接触异地校区的学习环

1. 设计思路

海洋学院的专业课程体系具有很强的层次性和阶梯性。

2. 设计理念

一切课程的设置都需以学生为中心,实习课程的设置应 体现出鲜明的实践、操作、探究的性质。能引导学生产生生 经过近十年的发展,海洋学院已经基本形成"2+2"的 动的个人体验,奠定大学专业学习的初体验。因此课程的设

3 数学团队

学院为该课程组建了一支高层次的教学团队, 组建了

第35巻増刊 2009年12月

光学技术 OPTICAL TECHNIQUE

Vol. 35 Suppl. Dec. 2009

文章编号: 1002-1582(2009)S-0189-02

工学与医学跨学科交叉培养 模式的探索与实践。

祝宇慧, 刘向东, 刘玉玲, 王晓萍, 郭小瑛

(浙江大学 光电信息工程学系,杭州 310027)

摘 要:介绍了温州医学院和浙江大学光电信息工程学系联合创建的本硕一贯七年制眼视光专业项目,探索了工 学与医学野学科复合型人才培养的新模式。促进了眼视光教育与学科的发展。为培养具有良好光学工程背景的眼视光医 学人才提供了一种新的模式。

关 键 词:复合型人才; 跨学科; 工学; 眼视光

中图分类号: G643 文献标识码:A

Exploration and practice of inter-discipline training pattern of engineering science and medical science

ZHU Yu-hui, LIU Xiang-dong, LIU Yu-ling, WANG Xiao-ping, GUO Xiao-ying

(Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: A seven-year system of ophthalmology and optometry established by Wenzhou medical college and optical engineering department of Zheijang University is put forward. A new pattern of inter-discipline training for engineering science and medical science is explored, which can promote the development of education and discipline of ophthalmology and optometry, provide a new pattern for training medical talents of ophthalmology and optometry with good optical engineering background.

Key words; compound talents; interdisciplinary; engineering science; ophthalmology and optometry

21 世纪以来,推进和加强复合型人才培养,既是科技、经 济与社会发展的迫切需要,也成为高等教育界的共识。 跨学 养,它是区别于传统的单一学科专业培养的新模式[1]。自 2002年起,湯州医学院和浙江大学光电信息工程学系联合创 建本硕一贯的七年制服视光专业,共同探索国内高校工科与 医学跨学科交叉培养模式,共享校际资源,推动学科间的交叉 会需求,眼视光学教育有着广阔的前景。 发展,在充分发挥两所高校不同学科优势的同时,取得了良好 的数学效果。

1 交叉培养七年制眼视光硕士的项目背景

1.1 温州医学院眼视光学专业

温州医学院从1978年开始招收眼视光学硕士研究生,该 专业将传统的眼科和西方现代视光学专业相整合,形成完整 的眼视光学高等教育体系,具有很高的创新性和科学性。该 学科干 1982 年被立为全国首批硕士学位的学科专业,1992 年卫生部视光学研究中心成立并挂靠温州医学院[2],温州医 学院眼视光学院是我国最早建立的眼视光学人才基地。

我国是视光产品的消费大国,消费指数为眼科临床的 4 倍[3]。从温州医学院附属眼视光医院患者首诊的病例数分布 科交叉培养模式,是指不同学校的学科、专业之间的交叉培 来看,传统意义上的眼病患者(与眼科学相对应)的比例从眼 视光医腔建隙时的 3/5 逐年减少,而与屈光和视觉功能有关 (与视光学相对应)的就诊比例逐年上升,当然两者的绝对数 量都在快速增长[4],这说明视光学服务在我国有着巨大的社

> 我国培养眼视光学专业人才的高校数量有限,且高等教 育培养体系尚未完善,培养眼视光专业人才无论从数量还是 从质量上都不能满足医疗市场的需求,眼视光人才短缺,据估 计,我国内地每百万人中不足一名视光师,而美国每11000人 就有一么得光师.

1.2 浙江大学信息工程(光电)专业

信息工程(光电)专业所在的浙江大学光电信息工程学系 创建于1952年,是中国光学工程学科的诞生地。信息工程 (光电)专业所依托的浙江大学光学工程学科是国家重点学

E-mail; yhzhu@zju. edu. cn

作者简介: 祝字慧(1984-),女,浙江省人,主要从事教学管理方面的研究。

189

· 164 ·

Vol. 34 Suppl. Dec. 2008

文章编号: 1002-1582(2008)S-0305-02

构建先进实验平台,适应系列课程实践教学需求

王晓萍, 刘玉玲, 陈惠滨, 刘向东 刘旭

(浙江大学,先电信息工程学系、杭州 310027) 摘 要,传统的微机系列课程实验教学模式已不适应研究型大学理工科学生"创新型人才培养"的要求。从"模块 化微机类课程实验平台"的构建、实验教学方法的报案。多层次实验教学内容的革新和针对"创新型人才培养"的系列实

关键词,微机系列课程;实验平台;层次化教学内容;实验教程

中图分类号: G642 文献标识码: A

Design the advanced experimental platform adaptable to the demand of the series courses' practical teaching

验教程的编著等几方面,探讨了微机系列课程实践教学的改革,并逐步付诸实施,在实际教学过程中成效显著。

WANG Xiao-ping, LIU Yu-ling, CHEN Hui-bin, LIU Xiang-dong, LIU Xu

(Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: The traditional experiment teaching mode of the micro-computer series courses can't be fit to the trend of innovation elite cultivation for the engineering college students. The micro-computer series courses' practical teaching innovation is described, including the blocking design of micro-computer series courses experiment platform, exploration to the experiment teaching method, multi-level experiment content's innovation, experiment tutorial compilation with aim to the innovation elite cultivation. These innovations have been brought into effect step by step, and good results have appeared during the process of practical teaching.

Key words: micro-computer series courses; experiment platform; multi-level experiment content; experiment tutorial

1 引 言

浙江大学信息学院光电系设置有"微机原理与接口技术"、"微机系统及应用"。"被入式系统与应用"等微机类课程、 是信息工程(光电)本科生的主要专业课程,具有很强的实理、 性、如何通过课程的实践环节,提高学生的实际动手能方和创新能力,是课程建设的重要内容之一。本文从"模块化微机类 课程实验平台"的构建、实验教学方法的探索、多层次实验教 学内容的革新和系列实验教程的编著等几方面,探讨微机系 列课程实践教学的改革,努力培养学生的实践,科研和创新能力,以适应研究型大学"创新型人才培养"的要求。

2 微机系列课程实验平台的设计思想

微机系列课程实验平台的设计要考虑;微机及嵌入式系统日新月异的发展现状和实验设备应有较长的时效性的问题,因此以先进性,前瞻性,灵活性,综合性为指导思想,采用 模块化,组合式的设计方法,对多门课程实验内容中共性的分设接口部分进行统一和综合,设计成次共平台(模块),将不同课程的CPU设计成可以插拔的组合式核心模块。运用公共平台结合不同的核心模块就可以开展不同课程的基础型、设计型、研究型和综合应用型实验、实验平台的设计充分考虑到了课程内容更新后实验系统的适用性,保证了时效性,具有鲜明的转色。

3 微机系列课程实验平台的构建

采用模块化、组合式方法设计的"模块化微机类课程实验 平台"——《ZDGJDTH-1型 80CS1/C8051/嵌入式 (ARM9)/ CPLD/实验开发系统》。由一个外设接口的公共平台和四块不 同CPU 的核心模块构成。

四块不同 CPU 的核心板分别为 80C51、C8051、ARM9、CPLD模块、只要更新报交前核心模块, 數能够作为"做机 原理与接口技术"、"做机系统与应用""能入式系统与应用"以及"单片机导论"等课程的实验系统、基于该系统、不仅可进行传统51 单片机 80C51 系列, 增强型 51 单片机 C8051 系列。32 位嵌入式微处理器 ARM9 片内资源实验,而且还可进行核口与扩展实验。包括中,非行的模数、数模转换电路可参密方式,LED、LCD、行列键盘等人机交互接口电路,基本串行通信核口电路(包括 12C、SPI、RS232、RS485)、高级通信接实验核口电路(包括初区和26户,2000年的10分。经常区域,2000年的10分。1000年的1000年的10分。1000年的10000年的1000年的1000年的1000年的1000年的1000年的1000年的10

4 采用启发式、质疑式、讨论式实验教学方法

课程的实验教学坚持以培养创新型人才为目标, 倡导和

作者简介;王晓萍(1962-),女,浙江大学光电信息工程学系教授,博士生导师,主要从事检测技术和智能仪器方面的研究。

205

第35卷第4期 2016年4月

实验室研究与探索 RESEARCH AND EXPLORATION IN LABORATORY

Vol. 35 No. 4 Apr. 2016

构建以效果和能力培养为主导的实验教学模式

蔡佩君, 王晓萍, 王立强, 梁宜勇, 齐杭丽

(浙江大学 光电科学与工程学院,浙江 杭州 310027)

摘 要: 针对传统实验教学中普遍存在的"重形式轻内容,重结果轻过程"导致学生 学而无识的状况,提出了"以学生为中心、以提高实验效果和学生实践能力为目的" 的实验教学理念,以具体课程实验教学为例,闸述了"层次化实验内容,引导式实验 指导、过程化实验管理、多元化实验考核"的"教师顺学而导、学生学以致用"的实 验教学模式。通过实践和探索,加强实验教学中学生的自我导向性和个人探究性, 有效激发了学生在课程实验中的主动性、积极性和创造性,实现学生"从依赖辅导 到独立设计、从被动接受到主动发现。从单纯模仿到个人(团队)创造"的转变。 关键词:实验教学模式,层次化实验内容;引导式实验指导;过程化实验管理;多

元化实验考核

中图分类号: G 642 0

文献标志码:A

文章编号:1006-7167(2016)04-0186-04

Construction of Effect-and Ability-Oriented Experimental Teaching Mode

CAI Pei-jun, WANG Xiao-ping, WANG Li-qiang, LIANG Yi-yong, QI Hang-li (College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: Traditional experiment teaching values form and result, and ignores content and process. Facing on the situation, experimental teaching idea that takes students as the center, enhances experiment results and students' practice ability as the purpose is put forward. With a course as an example, this paper expounded the experimental teaching mode which has features of hierarchical experiment content, heuristic experiment instruction, process management, and diversified experiment assessment. Through practice and exploration, this mode has strengthened students' personal exploration and self oriented learning, effectively stimulated the initiative, enthusiasm and creativity. It has realized three transformations of students: from dependence on counseling to independent design, from passive acceptance to initiative discovery, from pure imitation to personal create.

Key words: experimental teaching mode; hierarchical experiment content; heuristic experiment instruction; process management of experiment; diversified experiment assessment

0 引 言

实验教学是工科院校培养学生实践能力、创新思维的一个重要环节¹¹,课程实验贯穿于从大类课程到专业课程的整个大学学习过程,其课时和学分在培养

收稿日期:2015-05-21

基金项目:全国高校光电信息科学与工程专业教育教学热点难点 第二批教研项目(2014 [010] -12)

作者简介:蔡佩君(1988-),女,福建泉州人,硕士,工程师,主要从 F光电实验教学研究。

Tel. :15988132515 ; E-mail : caipeijun@ zju. edu. cn

方案的设置中占居一定比例。但相比于理论教学,课程实验往往被认为是依附于课意教学的一种辅助和补充手段¹³:"重形式轻内容",数量有余、深度不足的实验,难以将学生的收获从学而无识提升至探究、创新的高度。"重结果轻过程",走过场、程式化的实验、难以引导学生深入思考主动探索而激发他们的创造力。因此要改变实验教学的现状,实现从依附性到相对独立性的转变、被动性到相对主动性的转变、单一性到相对多样性的转变¹³,点切需要针对实验教学体系以及实验活动开展系统性研究。为了发挥课程实验为见真知、善用知识的教学效果,笔者通过调研和分析,以问

^{*} 收稿日期: 2008-09-01

国外大学光电工程专业课程教学模式的调查与分析

刘玉玲, 王晓萍, 祝字慧, 刘向东, 刘 旭 (浙江大学 光电信息工程学系,浙江 杭州 310027)

[摘 要] 近年来,浙江大学光电系通过本系出国深造的学生,开展了国外大学教育教 学模式的调研。内容涵盖了课程教学、实践教学、科学研究、诚信和学术道德规范教育等方面 的22个问题。重点总结了"课程教学"相关的10个问题,分析了在课程的授课方式、考核模 式、课程资源等方面国内外存在的差异,提出了有益建议;最后简单介绍了浙大光电系针对性 地开展的课程内容、教学方法、考核方式、教学资源建设、实践教学环节等全方位的专业综合 改革,以及取得的初步成效。

[关键词] 国外大学; 光电工程; 课程教学模式; 调查 [中图分类号] G624.4 [文献标识码] A [文章编号] 1672-8874 (2014) 03-0035-04

A Survey and Analysis of Opto - electronic Engineering - related Course Teaching Mode in Foreign Universities

LIU Yu - ling , WANG Xiao - ping , ZHU Yu - hui, LIU Xiang - dong, LIU Xu (College , China)

Abstract: Some graduate students of the Optical Engineering Department of Zhejiang University studying abroad carried out investigation of teaching mode of opto - electronic engineering - related course in universities abroad, and the survey results were summarized and analyzed. Students involved in the investigation have made useful suggestion for the home department's teaching, experiment, evaluation model, etc. The comprehensive reforms made by the Optical Engineering Department of Zhejiang University are introduced, including course content, teaching methods, assessment methods, course resources, etc. and some achievements made by the department are also given.

Key words: foreign universities; opto - electronic engineering; course teaching mode; survey

为进一步提升人才培养质量,提高课程教学 成效, 浙江大学光电系针对毕业后出国留学学生开 展了教育教学的调查。这些同学同时经历了国内、 国外的教育和培养,对于国内外的课程教学模式有 深切的体会和感受, 通过对他们的调查来探寻国内 外课程教学的差异,学习国外课程教学的先讲理念 和做法,以期为光电系的教育教学改革提供更广阔 的思路和有益的借鉴。

一、调查问卷基本情况

本次调查对象为光电系 1999 级 - 2005 级本科 毕业生及部分硕士或博士出国留学学生,调查时间 为2010年1月-4月,调查问卷以电子邮件的形 式发放, 共发放问卷 110 份, 回收 56 份, 其中有 效问卷 51 份。调查表主要包括四大块内容:课程 教学(含实践教学)、科学研究、激励与积极性、

「作者简介」 刘玉玲(1969), 女。浙江临安人。浙江大学老由信息工程学系曾委副书记、副教授、博士、主要从事大学生里根 政治教育研究。

第31卷第4期 2012年4月

实验室研究与探索 RESEARCH AND EXPLORATION IN LABORATORY

Vol. 31 No. 4 Apr. 2012

基于项目学习和实践的课程改革创新探索

王立强, 王晓萍, 杜立辉

(浙江大学 现代光学仪器国家重点实验室,浙江 杭州 310027)

摘要:"微机系统设计与应用"是一门理论联系实际、综合多学科知识的实践性很强的专业课程。从 提升学生的科研能力着手,提出"基于项目学习和实践"的实践教学改革思路,探讨了在该课程中实施 此方法的具体步骤、考核方式以及取得的效果。实践证明,该教学方法对于激发学习兴趣、加深知识理 解、提高工程实践能力、培养创新思维等具有积极的作用,是新形势下教学改革的有益尝试。

关键词:微机系统;项目学习与实践;课程改革

中图分类号:N 42 文献标志码:A 文章编号:1006-7167(2012)04-0114-03

Innovative Teaching Method for Project-based Learning and Practice

WANG Li-giang, WANG Xiao-ping, DU Li-hui

(State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China)

Abstract: Microcontroller System Design and Application is a specialist course which integrates theory with practice and covers several others courses. In order to improve the research competence of students, an idea which emphasizes that leaning and practice are based on projects is proposed. The detailed steps, assessment methods and final results of the idea are discussed. The practice has proved that this teaching method can inspire students' interests, deepen their understanding, improve their engineering abilities and train their innovative thinking.

Key words: microcontroller system; project-based learning and practice; course innovation

0 引 言

"微机系统设计与应用"的教学目的是培养学生 如何将已学的微机原理知识应用于面向实际工程需求 的科研项目的能力,促进学生的创新能力开发。传统 的教学方法和模式在这方面有所欠缺,因此我们尝试 采用基于项目的教学方法,根据学生的兴趣、爱好和特 长,结合光电系的有关科研项目,促进自我导向的学 习,让学生主动运用所学知识解决实际问题。

基于项目的学习和实践,其主旨是让学生的学习 与实践融入到项目任务的完成过程中,让学生积极地 主动学习,完成课程知识的建构,并在此过程中培养学

政稿日期:2011-09-23

基金项目:2010 年"浙江省新世纪高等教育教学改革"一类资助项 目(vb2010005);浙江大学研究生院资助项目(2010-37);浙江大学实

作者简介: 王立强(1977-),男,陕西渭南人,城土,副教授,主要研 究方向:生物医学光子学。

Tel.:0571 - 87952315; E-mail: wangliqiang@zju.edu.cn

生的创新意识、创新精神和创新能力,以及规范、守时、 团队协作等各项综合素质,培养学生运用所学知识解 决实际问题的能力[1-5]。

基于项目的学习方法已经有不少人对其进行研 究,并运用在一些实践性较强的课程的教学中,如在模 拟电子技术课程¹⁶,轨道交通课程¹⁷,计算机课程¹⁸ 以及其他课程[9-42]中,均取得了不错的效果。我们在 此基础上提出改讲,并运用于"微机系统设计与应用" 的实验课程中,取得了预期的效果。

1 "基于项目学习和实践"的实施方法

基于项目的学习和实践本着以项目为中心,以学 生为主体,以培养学生自主学习能力、创新能力、动手 能力为目标。在课题设计中充分考虑理论和实际的结 合、兴趣和专业的结合,使课题具有一定的研究价值, 兼有科学性、创新性、可实施性、实用性等特征。并且 应积极倡导学生自己设计题目,根据自己的兴趣、爱 好、知识水平进行设计,多分析,多研究,培养学生的独 立思考能力和创新能力^[1345]。

课程实验在工程创新人才培养中的作用及实践探索

王晓萍 刘向东 刘 旭

摘 要:分析了高校课程实验的定位、内容设置、考核及评价方式等现状,介绍了对国内外实验教学 方法和特点等方面的调研结果,展示了浙江大学光电系开展的以实践创新能力培养为核心的专业课程实验 改革与探索、指出课程实验的重要性以及在学生工程创新能力培养中的作用。

关键词: 课程实验; 实践教学体系; 项目学习与实践; 工程创新能力; 实验教学考核

高校围绕大学生实践和创新能力的培养, 在实践教学方 而作了不少努力, 尝试了一系列改革, 也取得了一定的 效果[1-2]。浙江大学光电系近年来开展了以宏践创新能 力培养为核心的专业课程实验改革与探索,取得了一定 的效果。

一、课程实验在大学实践教学体系中的地 位和现状

大学生工程实践与创新能力的培养是贯穿其整个大 学生涯的, 是一个不断培养和提高的过程。在诸多实践 教学环节中,课程实验贯穿于从大一开始的基础课程实 验到大四的专业课程实验,涉及内容多、知识面广、比 重大。通过课程实验既可以帮助学生巩固所学理论知识 和提高理论联系实际的应用能力,又可以帮助学生建立 科学的实验方法、良好的实验习惯和熟练的实践技能等 创新性工程人才应该具备的基本素养,让他们受益终生。 因此课程实验是大学实践教学体系的重要组成部分,在 实验通常是众多实验中进行尝试的个案,要在全部课 大学生的工程创新能力培养中发挥着积极作用。

然而就目前大多数高校的课程实验教学状况而言, 在实验教学定位、实验教学内容设置以及实验考核与评 若很大的矛盾。

识并注重其全面性和系统性以及深度和难度, 导致老师 因,很多高校的课程实验(特别是专业课程实验)大多 不单独开课,而是作为"课程"的实践环节。因此课程 仅在于帮助学生验证或加深对课堂知识的理解,而忽视 的实验积极性,达到课程实验的预期目的。

实践教学是培养创新人才的有效手段。近年来,各 了其对学生动手能力和实践能力的培养和促进作用。再 次,很多学校对教师的考核以课堂教学为主,有些学校 的课程实验则由实验教师或助教指导, 而理论教师投入

> 2. 关于课程实验内容设置。一是验证型实验偏多。 对于这类实验,在实验教程或实验指导书上基本会给 出详细的实验步骤和预期结果, 学生只要参照既定步 骤去复现实验结果,几乎不需要"动脑",因此学生对 这些实验在时间和精力上投入不够也没有兴趣,流于 形式走过场的现象很普遍。二是设计/综合型和创新/ 研究型实验少。对于这类实验,一方面需要教师设计 和策划一批既结合课程内容能够在课程实验中实施, 又要使大部分学生能够做出结果的项目,工作量很大; 另一方面, 要为学生提供开展这些项目的实验设备和 其他硬件条件,并在其实施过程中要给予学生充分的 讨论和交互机会,以帮助解决遇到的问题和困难,对 教学的软、硬条件都提出了很高要求。因此目前这类 程实验的全部学生中推行, 需要一个由占到面的逐步改

3. 关于课程实验考核及评价方式。作为课程的实验 价等方面存在的一些问题,与其重要性和所处地位存在 环节,一方面由于其成绩将合并到理论成绩中,在课程 总成绩中的比例一般不大于30%。并且由于以验证型实 1. 关于课程实验教学定位。首先,理论教学在我国 验为主,学生对实验缺乏积极性,应付做实验写报告的 的教学体系中长期占据主导地位,过分强调传授前人知 不在少数;另一方面老师很难对学生的实验情况全面了 解,因此主要根据实验报告的规范性,内容完整性等方 和学生将主要精力放在理论课程中; 其次,由于学分原 面进行评分,导致轻实验重报告、互相抄袭等行为产生。 囚此建立科学合理的实验成绩考核和评价方式, 从实验 预习与准备、实验过程与结果、实验报告、设计型实验 实验往往被认为是从属于理论教学的一种辅助手段,仅 完成情况等多方面进行考核和评价,将有助于提高学生

王晓萍,浙江大学光电信息工程学系教学系主任,教授;刘向东,浙江大学本科生院教务处处长,教授。

收稿日期:2011-02-22

0 引 言

基金项目:2010 年"浙江省新世纪高等教育教学改革"一类资助项 目(vb2010005):浙江大学研究生院资助项目(2010-38)

全美同类学科排名中名列第一[1]。该系也是 MIT 最

受学生欢迎的系,每年全校约20%~30%的新生选择

该系作为自己的主修专业。其师资力量非常維厚,有

45 位现任教师为美国工程院 NAE 院士,占全部 NAE

院士的 2% 左右, 而 NAE 院士来自所有工程相关领

域。9位美国科学院(NAS)院士;约60位美国电气和

中心主任,主要研究方向: 光电/电光器件检测。

Tel.:13429118608; E-mail:xiaodongzheng@zju.edu.cn

电子工程师协会(IEEE)会士(Fellow),9位计算机学 会(ACM) 会士,10位人工智能协会(AAAI)会士,8位

美国伊利诺斯大学香槟分校 (University of Illinois at Urbana-Champaign) 长久以来也一直是全美最优秀 的理工科大学之一。与加州大学伯克利分校 (University of California, Berkeley)、密西根大学 (University of Michigan-Ann Arbor) 一起被称之为美国 公立大学三巨头。任职的教授中有 18 人获得诺贝尔 奖,2人获图灵奖,1人获费尔茨奖,17人获普利策奖, 因此可以说是站在世界最顶尖的高等学府之一。在工 程领域排名世界第三,仅次于 MIT 和斯坦福大学。其 电气和计算机工程系(Department of Electrical and 作者简介:郑晓东(1962-),男,博士,副教授,光电信息工程实验 Computer Engineering)则更为突出,2009 年在广为大 家接受的 U. S. News and World Report 本科专业排名 中,该校电子工程专业(Undergraduate electrical

世界著名大学光电类实验课成绩评价体系初探

郑晓东, 闻春敖, 王晓萍, 刘向东, 刘 旭 (浙江大学 光电信息工程学系,浙江 杭州 310027)

摘 要:实验课程教学效果的优劣对工程教育质量有重要影响。美国某些学校,在教学质量控制方面树 立了非常好的榜样。深入了解其成绩评价体系,对我们自身实验课程的改革和建设具有重要借鉴作用。 从调查到的情况看,世界著名大学的光电类实验成绩评价已经抛弃了传统的考试评价方法,而采用多环 节、结合项目研究、口头报告及写作练习的多方位综合成绩评价体系。

关键词:信息工程: 光学工程: 实验教学: 成绩评价体系

中图分类号:G 424.31 文献标志码:A 文章编号:1006-7167(2011)07-0115-03

Investigation in Grading System of Optical Engineering Lab Courses in World Famous Universities

ZHENG Xiuo-dong, WEN Chun-uo, WANG Xiuo-ping, LIU Xiung-dong, LIU Xu (Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: The quality of engineering education deeply depends on the performance of specific lab courses. Departments of electrical and computer engineering at MIT and Illinois university of U. S. are ranked for the first and the second positions for undergraduate electrical engineering in the annual survey by 2009 U. S. News and World Report. As excellent examples we can learn from the grading system of their honor courses "Introductory Analog Electronics Laboratory", "Modern Optics Project Laboratory", and "Theory and Fabrication of Integrated Circuit Devices" were investigated in detail. The research shows that a multi-stages, multi-aspects, project based grading system has been established to evaluate the students instead of a single final examination.

美国麻省理工学院的电气工程与计算机科学系在 美国物理学会(APS)会士,多位图灵奖获得者。

Key words: information engineering; optical engineering; experimpental teaching; grading system

74

(浙江大学 光电信息工程学系, 杭州 310027)

摘要:本文介绍光电信息工程学系组织实施"浙江大学大学生科研训练计划"、"浙江 大学国家大学生创新性实验计划"、"浙江省大学生科技创新项目"以及光电系"大学生科研 训练计划"的情况分析与研讨,文中对参与的大学生、教师、管理等方面进行评价与讨论。 最后,在总结取得主要成绩的基础上,提出了将要开展的有关如何提高 SRTP 质量和水平的 问题,以便更好推进 SRTP 项目。

关键词: 大学生科研训练计划, 创新教育, 教学与管理

中图分类号: G642.0 文献标识码: A

Discussion of University Student Research Training Plan **Improvement**

CAO Xiang-gun WANG Xiao-ping, Zhu Yu-hui

(Department of Optical Engineering, Zhejiang University, Hangzhou 310027)

This paper discussed the organization and implement of the university Student Research Training Plan(SRTP). The states of national SRTP in Zhejiang University, Zhejiang university student science and technology innovation project and optical engineering university student research training plan has been analysized and discussed. The paper commeted and discussed the students, teachers and management of the projects. In the end, based on the summery of the main results, the difficulties of the SRTPs have been proposed which can make the SRTP better.

Keyword: SRTP, Innovation Education, Teaching management

0 引言

1998 年我校在全国高校率先启动了大 学生科研训练计划 (Student Research Training Plan, SRIP), 并将具正式纳入本 科生培养计划,尝试通过引导学生参与教师 的科研活动,达到将科研向教学渗透和创造

级 SRTP 项目 1200 项,参加学生约占学生

全方位、全过程育人环境的目的。目前实施 的 SRTP 项目有"浙江大学生校级、院系级 科研训练计划"(SRTP)、"国家大学生创新 训练计划"(国创)、"浙江省创新人才计划" (省创)等。据统计,浙江大学每年设立校 教学研究 王晓萍 刘玉玲 陈惠滨 梁宜勇 齐杭丽,微机原理与接口技术实践教学过程和内容的改革与探索

10. 3969/i. issn. 1671-489X. 2009. 12. 039

微机原理与接口技术实践教学过程和内容的改革与探索

王晓萍 刘玉玲 陈惠滨 梁宜勇 齐杭丽 浙江大学光电信息工程学系 杭州 310027

摘 要 介绍徽机原理与接口技术课程实践教学过程和内容的改革与尝试,从实验过程的实验预习与准入、软件仿真实 验。硬件连接与调试实验的3个阶段。以及实验内容的验证型、设计型、综合型3个层次3个水平、来构建课程的实践教学 体系,从而提高课程实践环节在学生综合运用能力和创新能力培养过程中的作用。

关键词 微机原理与接口技术:实践教学体系:验证型实验:设计型实验:综合型实验

中图分类号: G642.0 文献标识码: A 文章编号: 1671-489X (2009) 12-0039-02

Reform and Exploration in Principle and Interface Technology of Microprocessors Course Experimental Teaching//Wang Xiaoping, Liu Yuling, Chen Huibin, Liang Yiyong, Qi Hangli

Abstract The reform and exploration of "Principle and Interface Technology" course experimental teaching is introduced in this paper. The experiment teaching system includes three stages and three level experiments. The three stages are experiments preparation, software simulation and hardware debugging: the three level experiments include validation experiments, design experiments and comprehensive experiments. This mode is more effective in enhancing student's innovation ability and comprehensive quality.

Key words principle and interface technology of microprocessors; experiment teaching system; validation experiments; design experiments; comprehensive experiments

Author's address Department of Optical Engineering, Zhejiang University, Hangzhou 310027 硬件基础实验、硬件设计实验和硬件综合实验的结构模式:在 1 引言

基本工作原理、系统组成,接口技术及应用,具有概念多、 到综合能力培养,并与时俱进地增加实验内容,更新实验项目。 内容抽象和实践性强等特点。因此如何利用有限的实验学时 下面以3个实验为例进行具体介绍。 数,培养学生的动手能力、综合应用知识能力,激发学生的 3.1 **软件实验中的内存操作实验** 内存操作实验主要包括采 学习主动性和创新意识,是实践教学面临的一个重要课题。 用各种寻址方式的内存传送指令实验、内存拷贝实验、外部 通过对微机原理与接口技术实践过程和内容的改革与探索, RAM读写实验等。验证型实验内容为: 1) 通过各种寻址方式 形成了实验过程三步骤和实验内容三层次的实践教学体系,的数据传送类指令的阅读及实验验证,让学生对指令的各种 努力提高学生综合运用知识能力和实践创新能力。

2 改革实验过程,提高实验课效率

软件设计实验、硬件连接与调试实验的3个实验进程安排,对于 外部XRAM之间的数据块拷贝的程序阅读及验证, 让学生对外 不需要实验开发系统的软件设计实验,布置相关汇编语言程序 部XRAM的传送类指令的应用有更深入的理解和掌握。设计型 设计与调试内容让学生在自己的电脑上进行,并要求在课程网 实验内容为:实现内部RAM与外部XRAM之间的数据块逆序拷 站上进行实验准入题的测试(实验准入题是与实验内容、仿真 贝及外部XRAM的数据逆序交换等实验内容。综合实验内容的 环境等有关的题目),只有通过测试的学生才能在网上提交教 设计是让学生在做完以上2个层次实验的基础上进行选做。 件实验报告,有效地节省了实验课时。为使学生能够独立运用仿 以基础型实验及设计型实验为铺垫,提出灵活性和复杂度更 真软件和开发环境,顺利开展软件实验,除在课程网站上发布 高的实验内容,设计并讨论采用RO、R1与采用DPTR对外部 KeilC51相关软件和使用说明等资料外,还将KeilC51仿真软件 XRAM寻址的区别,设计程序实现对4×4矩阵进行逆置。 的使用方法拍成录像, 供学生学习和下载。使学生运用自己的电 脑完成汇编程序设计与调试的全部软件实验,而让有限的实验 给学生留有深刻的印象,以上实验内容囊括了各种寻址方式 学时数全部用于需要实验开发系统的硬件实验。

3 改革实验内容,提高实践教学效果

实验教学是整个教学体系中不可忽视的重要环节,改革实 3.2 硬件基础实验中的键盘接口实验 键盘接口实验包括运 求和计算机技术的迅速发展,在实验体系上形成由软件实验、 步的认识; 2) 从行列式键盘的硬件扩展、原理分析、键盘扫描例

徽机原理与接口技术是非计算机专业理工科学生的必 实验内容上,对于每一类实验构建验证型、设计型和综合型3个 修课,课程内容兼顾软件和硬件2个方面,包括了计算机的 层次、3个水平体系结构,努力做到由浅入深,从基础知识理解

寻址方式有更深入的理解; 2) 利用传送类指令实现内部RAM 之间的数据块拷贝的程序阅读及验证,让学生掌握传送类指 结合理论教学内容的讲授进度,提出了实验预习与准入、 令的运用和程序的编写; 3) 利用传送类指令实现内部RAM与

> 虽然数据传送类指令较为简单, 但是对于其应用未必能 的运用和对各种内存的访问方式和程序设计,使得学生能够 更深入透彻地理解数据传送类指令及其高级应用。

验内容不仅是要加深对理论知识的理解,而是、且要进一步加 用1/0实现独立式、行列式键盘的接口和软件设计。其验证型实 强理论与实践的结合, 培养学生的科学思维和创新意识, 提高 验内容为: 1) 从独立式键盘的硬件扩展、原理分析、键盘识别例 学生的动手能力和综合素质。为适应"创新型人才培养"的要 程的完善及验证,让学生对独立式键盘的软硬件设计方法有初

中国教育技术装备

39

虚实结合、层次培养的多元实践教学探索

蔡佩君,王晓萍,王立强,梁宜勇

(浙江大学 光电科学与工程学院,浙江 杭州 310027)

摘要:本文针对"微机原理与接口技术"课程。故实践教学"重形式轻内容,重结果轻过程"的问题,提出了虚拟实验教学、基础实验教学和探究 项目教学等层层递进的多元实践教学新模式,并开展"以形式转向质量"的测评考核方式,通过多元素综合考评实现学生实践应用能力的真实 评价。该教学模式有效提高了不同层次学生的实践能动性,激发学生的创造力,培养具有卓越工程素质人才。

关键词:多元实践模式;虚拟实验;实验教学;项目教学;多元测评考核

中图分类号: G642.0 文献标识码: A

文音编号:1008-0686(2020)06-0140-05

Exploration of Multivariate Practice Teaching Mode With Virtual – Actual Combination and Individualized Teaching

CAI Pei-jun, WANG Xiao-ping, WANG Li-qiang, LIANG Yi-yong

(College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: Traditional practical teaching has problems of emphasizing form over content, emphasizing result over process. This paper has put forward multivariate practice teaching mode with virtual experimental teaching, basic experiment teaching and progressive project teaching for the course Microcontroller Principles and Interface Techniques. Meanwhile it has carried out multivariate evaluation assessment to realize authentic assessment of students practical application ability. This teaching model has effectively improved the practical ability of the different level students, stimulated students' creativity and cultivate talents with excellent engineering quality.

Keywords: multivariate practice teaching mode; virtual experiment; experimental teaching; project teaching; multivariate evaluation assessment

0 引言

实践教学是培养学生探究创新能力的重要方面,是大学工科教育不可或缺的教学环节之一。它与课堂教学相辅相成,贯穿于整个大学学习过程。但是,相对于课堂教学而言,实践教学依然处于"依附性"地位,被认为是课堂教学的辅助和补充手段。根据我校开展的关于实践教学现状的问卷调查结果,当前实验教学仍存在诸多弊端,主要体现在两个方面:①重形式轻内容,实验数量过多,实验验度不

足,以基础规范型、验证型实验为主,学生难以将完整的理论知识体系映射至实践能力的真实提升;② 重结果轻过程,傻瓜式、灌输式的实验指导方式过于 直接,学生按套路、程式化完成实验,得到标准统一 的实验结果,难以深入思考、主动探索并激发创造力

附性"地位,被认为是课堂教学的辅助和补充手段。 从创新型人才培养需要出发,实践教学正面临 根据我校开展的关于实践教学现状的问卷调查结 三项重要的特征转变:从依附性到相对独立性的转 果,当前实验教学仍存在诸多弊端,主要体现在两个 变、从被动性到相对主动性的转变、从单一性到相对 方面:①重形式轻内容,实验数量过多,实验深度不 多样性的转变^①。近年来,各高校不断进行实践教

收稿日期:2019日1日9,修回日期:2019日2日6

基金项目:浙江省高等教育课堂教学改革研究项目(kg20160019)

第一作者:蔡佩君(1988-),女,硕士,实验师,主要从事光电实验教学研究,E-mail:caipeijun@zju.edu.cn

第40卷 第4期 电气电子教学学报 Vol. 40 No. 4 2018年8月 JOURNAL OF EEE Aug. 2018

以学生为中心的课程改革与实践

王晓萍1,蔡佩君2,王立强2,梁官勇2,刘玉玲2

(1. 浙江大学 海洋学院, 浙江 舟山 316021: 2. 浙江大学 光电科学与工程学院, 浙江 杭州 310027)

摘要:课程是大学人才培养的重要载体和主要途径。先进的培养方案和课程体系需要通过课程教学予以实施:先进的教学理念和教学方法需要 从课程教学切入。我校先电学院"微相原票与接口技术"课程组,坚持"以学生为中心、以能力培养为主导"的教学理念,持续开展"教授方法、 学习方法、考核方法、实验方法"周法融合的课程改革,有效激发了学生学习、探索、实践和创新的积极性。为他们的成长提供了良好平台。 关键证:参析方法:学习方法:老椅方法:定验 方法

中图分类号: G420

文献标识码:A

文章编号:1008-0686(2018)04-0015-04

Student-Centered Curriculum Reform and Practice

WANG Xiao-ping1, CAI Pei-jun2, WANG Li-qiang2, LIANG Yi yong2, LIU Yu-ling2

(1. Ocean College, Zhejiang University, Zhoushan 316021, China; 2 College of Optical Science and Engineering, Zhejiang University, Hangshou 310027, China;

Abstract: Courses are an important way of cultivating talents in college education. Advanced training schemes and the course system are implemented through course teaching. Advanced teaching notions and methods also rely on course teaching. The teachers of Microcontroller Principles and Interface Techniques course in the Optical Science and Engineering College of Zhejiang University insist on teaching concept of student-centered and ability training-oriented. They actively carried out course reforms in four aspects, namely teaching, learning, evaluation, and experimentation. The reforms not only have effectively inspired students to learn, explore, and practice actively, but also provided a good platform for theirself-learning and personal growth.

Keywords: teaching method; learning method; evaluation method; experimentation method

0 引言

我校作为中国重点建设并向世界一流大学迈进的高校,坚持"以人为本、整合培养、求是创新、追求卓越"的教育理念,以"培养知识,能力、素质俱佳,具有求是创新精神和国际视野的拔尖创新人才和未来等者"为育人目标,积极推进课程教学改革和

在2015年浙江大学教育教学讨论会议上,吴朝 晖校长指出,人才培养的成效取决于科学的教学方 法,并倡导和鼓励教师围绕培养目标,改进传统课堂 教学方法,开展参与式、启发式、讨论式和研究式教学[□]。因此,开展"从知识传授到能力培养"的各式课程教学;激发学生的学习主动性、积极性和主动探索精神;实施"因材施教",为优秀学生的脱颖后出搭建平台、创造条件;改变"重形式轻内容、重结鬼怪过程"的传统实验模式,提高学生的综合实践能力等等,成为我校教学改革的主要研究课歷和内容。

1 课程培养目标及教学理念

"微机原理与接口技术"课程具有较强的工程 应用背景,是高等学校电子信息类、机电控制类、仪

第一作者: 王晓萍(1962-), 女,博士,教授,主要从事光电传感器研究和微控制器相关课程教学工作, Email: xpwang@ zju. edu. cn

DOI: 10.16750/j.adge.2021.12.001

自构建光纤链路的 OTDR 测试 实验及教学实践

林远芳, 李明宇, 阎春生, 时尧成, 王晓萍, 刘 旭

(浙江大学 光电信息工程学系,现代光学仪器国家重点实验室,浙江 杭州 310027)

摘 要:为了加深学生对光纤基础知识、光纤连接及测试基本理论的理解,提高学生的工程应用能力,浙江大 学信息工程(光电)专业在"光通信及集成光电子技术模块实习"中设置了光纤链路测试实验,要求学生基于 光纤、跳纤、尾纤、光纤端面处理工具、连接器、衰减器和熔接机等实验器材,通过机械对接、法兰及熔接方式 自行构建光纤链路,并使用光时域反射计(optical time domain reflectometer,OTDR)进行测试,并对光纤端而 质量、接续效果以及链路构建的合理性进行评估。2 a 来的教学实践表明,通过这种"基于任务,边做边学"的 自主式、探究式实验,学生不仅能掌握 OTDR 的使用要点、光纤的端面处理及接续方法,而且学生发现问题和 解答问题的能力也有所提高。

关键词,光纤通信; 实验教学; OTDR; 竞减

中图分类号: TN915.06; G642.423 文献标志码: A 文章编号: 1002-4956(2011)08-0034-05

Test and measurement of self-built optical fiber links based on OTDR and its teaching practice

Lin Yuanfang, Li Mingyu, Yan Chunsheng, Shi Yaocheng, Wang Xiaoping, Liu Xu

(State Key Laboratory of Modern Instrumentation, Department of Ontical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: In order to enhance students' comprehension of the basics, connection and testing of optical fibers and improve their engineering application ability, an experiment of testing optical fiber links is included in "practical training and exercise of optical communication and integrated optoelectronic technology" set by Zhejiang University for the optical information engineering major. The students were required to build optical fiber links themselves by means of flange connection, mechanical splicing and fusion based on experimental equipment, such as fiber, jump fiber, tail fiber, fiber end preparation tools, fiber connector, attenuator, fiber fusion machine, etc., then to measure with the optical time domain reflectometer (OTDR) and evaluate qualities of the fiber end and splicing as well as the rationality of fiber links. The teaching practice for two years shows that, through this kind of "task-oriented, learning by doing," autonomous, exploratory experiments, the students can not only master the operation of OTDR, the end preparation and splicing of optical fibers, but also improve their abilities of finding problems from experimental phenomena, thinking, analyzing and then giv-

Key words; fiber-optic communication; experimental teaching; optical time domain reflectometer(OTDR); attenuation

收稿日期:2011-02-15 修改日期:2011-05-20

基金项目:教育部、财政部第四批高等学校特色专业建设点项目 (TS11458):浙江省教育厅 2010 年浙江省新世纪高等教育 教学改革项目(yb2010005);浙江省教育厅高教处实习专项 经费/浙江大学 2009 - 2010 学年校内实习教学基地建设

事与光学有关的理论与实验教学及虚拟实验研究.

E-mail: linyuanfang@zju, edu, en

浙江大学信息工程(光电)木科专业由 1952 年教 育部在浙江大学设置的光学仪器专业几经调整设立 的[1-3]。自2006年起,该专业下设"光电系统及工程"、 "光通信及集成光电子技术"2个模块,学生需要从中 作者简介: 林远芳(1975一), 女, 福建南安, 博士, 助理研究员, 主要从 选一, 并修读相应的模块课程[4]。 经过近3 a 的筹备 和建设,安排在大三暑假的"光通信及集成光电子技术 模块实习"于2009年8月首次开出。实习内容包括:

联盟视角下的高等院校与科研院所 研究生协同培养模式优化研究

王立忠 王晓萍 袁雯静 谢程程

撞要: 基于当前我国高等院校和科研院所在研究生协同培养过程中面临的新问题和新挑战,引入"联盟" 概念,从战略层面、运行模式和管理机制三方面出发,分析了校所研究生协同培养工作中存在的问题,提出组 建战略联盟、优化发展模式、完善管理架构的提升路径; 同时结合浙江大学海洋学院与自然资源部第二海洋研 究所的实证案例对校所协同培养模式的优化提出对策建议,以期为高校与科研院所协同培养工作的推进和创新 提供新的用路

关键词: 联盟; 校所协同培养; 研究生教育

作者简介: 王立忠,浙江大学副校长,浙江大学海洋学院院长,教授,杭州 310012; 王晓萍,浙江大学海 洋学院副院长,教授,舟山 316021; 袁雯静(通讯作者),浙江大学海洋学院研究生教学主管,舟山 316021; 谢程程, 浙江大学海洋学院国际生主管, 舟山 316021。

随着科学技术高速发展,科学与社会之间的互 动愈发频繁, 多领域、大跨度的学科交叉日益广泛, 从基础研究到基础应用研究到应用研究到开发研究 的周期缩短, 高等院校与其他组织机构之间的边界 趋向模糊,各种跨学科、跨组织、跨群体的合作活 动共同致力于人才培养,形成紧密协作、共同发展 的态势。其中一种重要的合作形式就是高等院校与 科研院所间开展的研究生协同培养。作为两个不同 性质的组织, 双方拥有各自的资源优势, 如高校拥 有学科资源、教学资源、学校声誉形成的品牌资源 等;科研院所可提供科研项目、经费、仪器设备等 科技资源和智力支持; 而协同培养研究生则是二者 以资源交换为纽带, 双方主动对接, 以期在学科建 设、科教资源共享、优秀人才培养等方面取得实质 性的突破。从1951年政务院颁布的《关于改革学制 的决定》要求"大学和专门学院得设研究部……招 收大学及专门学院毕业生或同等学力者,与中国科 学院及其他研究机构配合,培养高等学校的师资和 科学研究人才"开始[1],协同培养已经走过了70个 年头。从相关政策法令的颁布,到其合作理念、动

力机制、协作模式、运行方式、管理制度等方面的 变化来看, 高校与科研院所从最初的配合培养后备 师资力量、科学研究人才到协同培养高层次拔尖创 新人才,从人才导向到成果导向再回归到人才导向, 从行政推动到行政推动与机制牵引并重, 从外部资 源供给到外部资源供给和内生型发展共同推进,从 浅层次的实习教学环节合作到深入贯穿各环节的紧 密协作[2-3],协同培养已经逐步向深层次、内生型、 联盟式的创新协同培养新阶段迈进。

尤其是在党的十九大关于"培养德智体美劳全 面发展, 具有全球竞争力的高素质创新人才和领导 者"[4] 和 2020 年全国研究生教育会议关于"深化研 究生培养模式改革,促进科教融合和产教融合,着 力增强研究生实践能力、创新能力"的要求下[5], 协同培养与创新已成为当前各大高校加快"双一流" 建设,实现研究生教育内涵式发展与改革创新,提 升研究生实践能力的重要战略选择。浙江大学等国 内一流高校都明确指出要坚持协同发展的理念, 充 分利用重点单位的智力资源和科技资源,结成育人 发展共同体[6]。"协同培养、科教融合、院所一体、

基金项目:浙江大学 2018 年学位与研究生教育重大课题"异地办学条件下研究生多学科交叉培养模式探究"(编号: 20180101)

研究型大学本科专业培养方案的制订依据与分析

——信息工程(光电)本科专业培养方案分析

王晓萍,刘玉玲,刘向东,刘 旭 (浙江大学 光电信息工程学系,浙江 杭州 310027)

摘要:合理、完善的专业培养方案和教学计划,是先进的本科教育教学体系的重要组成部分,是具有"宽、专、 交"知识结构和高素质人才培养的基本保证。本文从符合度、社会需求度和合理性等几个方面,分析了浙江大学信 息工程(光电)专业2009-2012级学生的培养方案。并就专业课程设置与Arizona大学和Rochester大学相关本科专业 的课程进行了分析比较。

关键词:培养方案;符合度;社会需求度;合理性 中图分类号:G 642.0 文献标志码:A

本科教学是大学的立校之本, 人才培养是学校的 全面落实浙江大学"以人为本、整合培养、求是创新、追 求卓越"的教育理念,浙江大学木科生院全面启动并实 施了2009-2012本科专业培养方案和教学计划的制订 工作: 光电信息工程学系历时半年, 经过修订、讨论、修 改, 征求意见, 完善和论证等一系列工作, 完成了信息

问题中怎样应用和怎样解决的。

三、"点穴式"正反案例教学应注意的问题

1. 高中概率与大学概率教学内容和思维方式的衔 中思维方式的转移处理。高中概率只强调单一的随机 思想,过多地依赖直觉和经验,大学概率则考虑系统的 随机思想,表述过程更依赖推导和证明。

2.教学过程要注重概率统计思想方法的渗透,概率 统计尤其是数理统计的基本思想是由局部(样本)的信 息推断出总体的信息,这种概率推断思想不同于高等 数学中的逻辑推理,是带有概率性质的一种推理方法; 注重学生的主动参与和动手操作,鼓励学生动手操作、 主动参与试验; 教学过程要加强对知识的演示, 特别是 那些抽象的概念,向学生作一个直观的系统解释。

3.在概率统计中,许多概念抽象、难懂,有许多人一 时无法理解,若仍采用严格的数学定义方式,则学生恐 怕最终只记住了一些定义、定理,知其然而不知其所以 然。尤其是在统计中,不少初学者只看到了其中人量的 公式、方法,为背公式、记步骤而疲于奔命,却不知为什 么要用这些公式、方法,因此要重视对学生思想方法和 学习方法的指导, 选取的案例要能做到启发学生思维

文章编号:1674-9324(2012)02-0049-03

二、符合度分析

本科专业培养方案首先要与研究型大学的培养定 根本任务。创建符合国际一流的研究型大学的本科教 位和与学校大类培养的总体方案相适应11。浙大的人才 育教学体系,培养和造就高素质的创新人才,需要合 培养定位是造就具有国际视野的高素质创新人才和未 理、完善和先进的专业培养方案和教学计划为支撑。为 来领导者,因此要实施通识课程、大类课程和专业课程 精品化战略。通识课程着重于学生综合素质的提高,为 学生提供多种思维方式和广阔的教育,提升学生的认 知能力和综合素质:大类课程着重建立宽厚的学科知 识基础,奠定学生学科专业发展基石:专业课程着重培 养学生扎实的学科专业知识以及实践能力和创新能 工程(光电) 专业"09-12"培养方案的制订。本文从符合 力。其次是专业培养方案要适应专业培养目标。信息工 度、社会需求度和合理性几个方面对该培养方案进行 程(光电)专业的培养目标是经过多学科知识的通识教 育、工科类平台教育、专业教育和实践教育,培养德、

四、"点穴式"正反案例教学的作用和意义

这种教学模式充分利用各种教学资源, 把教师和 接与过度。包括高中概率统计内容与大学概率统计内 学生,学生和学生之间的双向互动有机地结合起来,它 容的衔接处理,特别是大学概率统计新内容的衔接,高 有利于学生对抽象理论的理解和掌握, 使学生清晰地 掌握一些重要概念和公式,并能灵活运用;有利于教师 的专业水平、教学能力乃至整体素质的提高,而且也有 利于学生的认知水平、表达能力及分析、解决问题能力 的提高;同时还增强了他们的创新意识,为学生今后专 业知识的学习和掌握,以及学生在日后的工作和科研 中能够熟练灵活地应用现有的概率统计方法。

[1]陈义安.兴趣驱动教学法在大学数学教学中的应用[1].中国 大学教学,2010,(7),65-66.

[2]陈丽华.数学反思学习的发展价值及其局限性[1]教育学术 月刊,2010,(4):22 24.

[3]叶青等."主动式"课堂教学模式的探索与实践[1]教育学术 月刊,2010,(11):105-106.

作者简介:宋伟才(1973-),男,江西万载人,江西 中医学院计算机学院,讲师,硕士。

基金项目: 本文系2010年江西省教育厅教学改革 课题(编号JX JG-10-9-12)

第36卷增刊 2010年12月

光学技术 OPTICAL TECHNIQUE

Vol. 36 Suppl. Dec. 2010

文章编号: 1002-1582(2010)S-0120-04

大学生光电设计竞赛的组织工作研究。

林远芳, 郑晓东, 王晓萍, 刘向东, 刘旭 (浙江大学 光电信息工程学系, 浙江 杭州 310027)

摘 要:回顾了浙江大学第二届光电设计竞赛从筹备到结束各个环节的组织工作与主要时间表,统计了竞赛报名 情况、参赛方案提交情况、晋级情况与获奖情况。总结了专业竞技赛在赛场布置、人员安排、晋级表和图板位置调整等方

关键词:信息光学;学科竞赛;赛场布置;人员安排;晋级表;全国大学生光电设计竞赛 中图分类号: G808, 22; TN29; TN219 文献标识码: A

Study on the organization of the student's Opt-Sci-Tech competition

LIN Yuanfang, ZHENG Xiaodong, WANG Xiaoping, LIU Xiangdong, LIU Xu (Department of Optical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China)

Abstract: The organization of the 2nd Zhejiang university student's Opt-Sci-Tech competition from the preparation to the end and the schedule of the competition are reviewed. The enrollment, scheme submission, the promotion table and the awards of the competition are given statistically. The venue layout, personnel arrangements, promotion rules and the board position adjustments of the professional athletics competition are summarized,

Key words: information optics; discipline competition; venue layout; personnel arrangement; promotion table; national university student's Opt-Sci-Tech competition

为了加强大学生创新能力、实践能力及团队协作精神的 培养,为广大学生提供一个了解和运用光电知识、解决实际问 题、领略光电魅力的平台,同时激发创意思维,进一步加强光 电学科与其他学科的交叉与融合,促进光、绿色能源与节能照 明相关知识的普及,继 2008—2009 年成功举办浙江大学"舜 宇杯"第一届光电设计竞赛和第一届全国大学生光电设计竞 生为主。鼓励学生跨专业、跨学科自由组队参赛。 赛[1]后,我校于2010年1月至5月举办了浙江大学第二届光 电设计竞赛。本届竞赛由浙江大学本科生院主办,浙江大学 光电信息工程学系、浙江大学光电设计创新实践基地承办,浙 江大学光电信息工程学系学生会协办,得到了浙江大学现代 光学仪器国家重点实验室的赞助。

浙江大学第二届光电设计竞赛主题为"光与生活",旨在 体现光学与现实生活的紧密联系,进一步凸显光学在现实生 活中的重要作用。竞赛分为创意设计赛和专业竞技赛两类, 前者着眼于与竞赛主题"光与生活"有关的创意,后者的竞赛 题目、竞赛要求、竞赛条件和竞赛规则在内容上与 2010 年 8 月份举行的第二届全国大学生光电设计竞赛[5-4]基本一致。

因此,本次竞赛不仅是展示创新创意的一次机会,同时也是第 二届全国大学生光电设计竞赛的热身赛。

1 竞赛的总体情况

1.1 主要时间表

表 1 是竞赛从筹备到结束的主要时间表,整体安排紧凑 有序。参赛对象要求为全日制在校本科生和研究生,以本科

表 1 浙江大学第二届光电设计竞赛主要时间表

日期	内容				
2010, 1, 7	发布竞赛预通知,公布竞赛主题,鼓励组队调研				
2010, 3, 12	发布举办竞赛的通知,给出时间安排和相关要求				
2010. 3. 22	召开竞赛启动与宣讲会,邀请上届获奖同学发言				
2010, 4, 2	将专业竞技赛参赛方案送给六位专家初审排名				
2010. 4. 11	专业竞技赛参赛方案进行资助与否的现场答辩				
2010, 4, 13	公布获 2000 元、1500 元两类经费资助的赛队名单				
2010, 4, 21	邀请浙江省内兄弟院校来校参加竞赛,共享资源				

E-mail: linyuanfang@zju, edu, cn

基金項目: 浙江省新世纪高等教育教学改革研究项目(yb07007)

作者简介: 林远芳(1975-),女,助理研究员,博士,主要从事光电信息方面的研究。

收稿日期: 2010-09-20

第35卷增刊 2009年12月

光学技术 OPTICAL TECHNIQUE

Vol. 35 Suppl. Dec. 2009

文章编号: 1002-1582(2009)S-0196-03

光电信息工程专业课程设置与工业 人才职业需求匹配度的研究:

郑晓东, 刘旭, 刘向东, 王晓萍, 刘玉玲

(浙江大学 光电信息工程学系,杭州 310027)

摘 要:根据日本经济产业省对工业界光学相关人才所需知识结构的调查,比较分析了工业界光学人才所需知识 结构与浙江大学现有专业课程设置之间的匹配度。研究结果表明,现有课程设置与企业对研究、开发人才知识结构的需 求非常一致,但与工业界需求的光学材料研究及产品制造所需人才的匹配度一般。这与所设立的培养目标是一致的。 建议在制定专业数学指导规范时要统筹考虑。兼顾不同层次、不同门类人才的培养目标,不宜对专业课程设置作过于严

关 键 词: 课程设置; 光学工程; 工业需求; 匹配度

中图分类号:G642.0 文献标识码:A

Study on the matching degree of industrial career needs and curriculum of optical engineering in Zhejjang University

ZHENG Xiao-cong, LIU Xu, LIU Xiang-dong, WANG Xiao-ping, LIU Yu-ling (Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: According to a survey in requirement of the knowledge structure for optical industrial careers, the matehing degree of industrial needs and the curriculum of optical engineering in Zhejiang University are analyzed. The analysis results show that the curriculum natches very well with the professions which pursue on design and development jobs in industry, but only have a little poor match with the career requirement of ontical material research and product manufacture. It reveals a national-wide curriculum guideline for optical engineering should cover various situations for the colleges who have different levels of education targets,

Key words: curriculum; optical engineering; industries needs; matching degree

0 引 言

大学各专业的培养方案、课程设置是关心、从事教学工作 的专业人士所普遍关心、思考和交流的重要内容[1-4]。尽管 大学有丰富多彩的讲座、社会实践及各类社团活动,但课堂教 学和专业实习仍旧是大学最重要的数学内容。 冬校, 系的课 程设置直接关系到其所培养学生的知识结构、专业能力、继续 升学和就业的竞争力及毕业后几十年职业生涯的长期发展潜 本身对自己职业生涯的知识、经验的积累,较少进行实际的统 力。

与机械、电气、电子、材料等专业作比,光电信息工程专业 具有非常鲜明的特点,就是其知识的广泛交叉性[3:4]。作为 先进的科学探索手段,光学被应用在医学、材料、能源、通信等 各个领域。我们注意到,高校的学科建设经费很大比例被用 于进口国外的先进光学设备。特别是医学、材化等学院,其光 与企业对人才的需求是否相匹配? 日本对此也有争论,工业 学设备的先进程度甚至超过光电系。现代光学设备及光学产 品大都广泛涉及到光学、电子、控制、材料等各类知识、所以 工业界对人才的需求不明确。为此,日本经济产业省对产业 在光学工程类人才的培养方案制定中,有太多的课程需要纳 人教学计划。我校工程类本科生培养方案的学分数限定为 165,除必修的思政、体育、英语、数、理、化及其他大类和通识 课程外,专业课设置方面能够调整的余地不大。在有限的空

间内,要统筹兼顾、平衡多方面的关系:(1) 学生毕业后快速 适应工作所需要的实用技术与保持长期职业竞争力所需的扎 实理论基础的矛盾,也是继续深造为主还是本科就业为主的 矛盾:(2) 有限学时数与多学科综合知识需求的矛盾;(3) 光 学专业的专业能力与光.机.电.算综合能力培养的矛盾。制 定教学计划的过程就是各种因素的平衡、寻优的过程。通常 教学计划制定一般是参照国外相关院、系的教学计划与教师 计研究、正如 Photonics Spectra 的出版人 W A Laurin 所指 出的:"尽管我们为解决教育问题提出了很多解决方案,但并 没有实际验证这些方案是否真正起作用"[5]。

与半导体、生物和汽车工业相并列,光学工业是日本的四 大支柱产业之一,在经济中占有重要地位。学校的教育活动 界认为教育界培养的学生不符合产业需求,而教育界则认为 界人才知识结构需求与大学课程设置之间的匹配度进行了详 细调查[6]。调查结果表明,日本相关大学的课程设置与产业 界对各类光学设计、开发人才需求的匹配程度都很低。

研究教学计划与产业界的需求是否匹配具有重要意义。

22

第35卷增刊 2009年12月

光学技术 OPTICAL TECHNIQUE

Vol. 35 Suppl. Dec. 2009

文音编号・1002-1582(2009)S-0223-03

第一届全国大学生光电设计竞赛侧记

郭小瑛, 王晓萍, 郑晓东, 刘向东, 刘旭, 姚达 (浙江大学 光电信息工程学系,杭州 310027)

摘 要: 2009年5月,由中国光学学会主办、浙江大学光电信息工程学系、中国计量学院光学与电子科技学院承办 的第一届全国大学生光电设计竞赛在浙江大学成功举行。介绍了竞赛的报名情况、理论方案评审,实物竞赛、塞后感想

关 键 词:大学生光电设计竞赛;太阳能动力赛车;太阳能驱动光源

中图分类号:G642.4 文献标识码:A

Glance of 1st nationwide undergraduate student optical and electrical design competition

GUO Xiao-ying, WANG Xiao-ping, ZHENG Xiao-dong, LIU Xiang-dong, LIU Xu, YAO Da

(Dept of Optical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: Sponsored by the Chinese Optical Society, the 1st China nationwide undergraduate student optical and electrical design competition was held successfully by department of optical engineering, Zhejiang University and China Jiliang University on May 2009 in Hangzhou. A some of the competition are described, including the application, the theory of program evaluation, in-kind competition, such as after thoughts

Key words; Undergraduate Students; Competition; Optical and Electrical Design

为讲一先加强大学生创新精神,实践能力和团队精神的 比可直接参加第一阶段的实物音赛, 培养,为全国光学工程学科和光电信息工程专业大学生创建 1.1 理论方案评比 施展才华的良好舞台,为学生全面发展特别是创新人才的脱 颖而出创造良好的竞赛平台,推动高等教育人才培养模式和 实践教学的改革,不断提高人才培养质量,浙江大学光电信息 年倡议发起了第一届全国大学生光电设计竞赛活动。

导分委员会及杭州电子科技大学协办。浙江大学光电信息工 程学系及中国计量学院光学与电子科技学院承办,并得到了 浙江大学现代光学仪器国家重点实验室、中国计量学院、浙大 之光照明技术研究有限公司、聚光科技(杭州)有限公司、舜宇 集团光学科技有限公司、生辉照明电器(浙江)有限公司以及 浙江水品光由科技股份有限公司的赞助。

为倡导太阳能的开发利用,首届全国大学生光电设计意 赛以"光与能源"为主题,充分诠释了开发清洁能源、倡导绿色 生活的时代理念。具体竞赛题目为"太阳能动力赛车"和"太 阳能驱动的电光源"(以下简称"赛车"和"光源")。自 2008 年 7月公布竞赛题目以来,来自全国 21 所高校的 134 支队伍报 名参加了竞赛。学校分布,已辐射到全国众多高校。

竞赛过程分理论方案和实物竞赛两各个阶段进行。理论

方案评比的目的是挑选十个参赛队由现代光学仪器国家重点 实验室提供每队一万元的实物制作资助。不参加理论方案评

理论方案评比分为网络评审和答辩两个阶段。各参赛队 提交的理论方案在去除方案提交者的信息后被分送给三位专 家讲行盲宙, 根据专家的评审结果洗拔了 21 个方案讲人答辩 工程学系和浙江大学现代光学仪器国家重点实验室于 2008 评审。答辩评审方式是浙江省内参赛队到现场答辩;省外队 通过播放答辩录像和同步电话通信的方式进行,大大节省了 首届"全国大学生光电设计竞赛"由中国光学学会主办。 省外参赛队旅行可能带来的时间和经费负担。为了保证评比 浙江省光学学会,高等学校光电信息科学与工程专业教学指 的公正,五位评审专家均来自不同单位(学校),且专家所在单 位没有答辩队。答辩后专家讨论确定获资助的 10 个参赛队,

表 1 恭密助的参赛队 夕单

序号	学校	团队名称	参赛队队员	指导教师
1	浙江大学	Bolt	李靖、屈海洲、周斯忠	闻春敖
2	中国计量学院	光之子	杨琳、徐豪、张海艇	陈充
3	北京理工大学	BIT, Dream	何溜、陈子越、范文	金伟其
4	西安工业大学	急速队	姬博文、彭龙军、 支寮军	蔡荣立、田会
5	电子科技大学	黑暗游侠	苏红、夏汉定、贾宏宇	彰任军
6	上海交大	WWMax	牟永鹏、汪洋、王龙	黄梅珍
7	浙江大学	瀕光	李恬、卢金元、姚灵芝	无
8	长春理工大学	WXZ	许睿、张桂林、工铎竣	田明
9	武汉大学	武汉大 学代表队	王伟平、佘景希、 胡亚文	石岩
10	华中科技大学	团队二	陈韡、李辰、李显尧	张仪/韩宏伟

· 收算日期 · 2009-10-10 E-mail: gxv2007@ziu. edu. cn

作者简介: 郭小瑛(1975-),女,浙江省人,主要从事教学管理的研究。


223

^{*} 收稿日期: 2009-10-10 E-mail: xiaodongzheng@ziu.edu.en

作者简介:郑晓东(1962-),男,浙江省人,浙江大学副教授,博士,主要从事半导体照明及光伏电池的设计,封装及检测技术方面的研究。

2. 主要科研奖清单

● 刘华锋-浙江省科学技术/自然科学二等奖(2 项)、吴文俊人工智能科学技术奖、广东医学科技奖一等奖

● 白剑-军队科学技术进步三等奖

为了表彰在促进军队科学技术进 步工作中做出贡献者,特颁发此证书, 以资鼓励。 成果名称: 大口径长焦距透镜焦距检测系

统研制

奖励等级: 军队科学技术进步三等奖

获奖者: 白剑(330106196701170414)

证书号: 2016373730840003-2

● 何宏建-浙江省高等教育学会高校实验室工作研究成果奖一等奖

浙江省高校实验室工作研究成果奖

证书

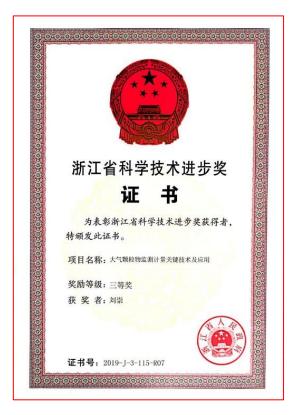
为表彰 2020-2021 年浙江省高校实验室 工作研究成果奖获得者,特颁发此证书。

成果名称:磁共振成像实验室的网络化规范化

管理研究

奖励等级: 一等奖

获 奖 者: 浙江大学


丁秋萍、何宏建、沈义民、刘雪娜

浙江省高等教育学会实验室工作分会

成果编号: CG202102

2021年12月

● 刘崇-浙江省科学技术进步三等奖、第二届"金燧奖"中国光电仪器品牌榜金奖、中国光学十大进展提名奖

● 汪凯巍-华为科技"火花奖"

汪凯巍教授

华为向全社会发布难题,兼顾产业挑战和科学价值。探 索、牵引、开放、思辨,百花齐放,百家争鸣。

汪凯巍教授在硬件工程难题《基于事件相机 Event camera 运动矢量估计》中,针对高帧率检测需求与手机算力有限的矛盾,跳出传统基于深度学习模型的检测思路,提出了图像信息与事件信息融合的高帧率高精度运动矢量检测方案,具有较高价值,被授予华为公司火花奖,特发此证。

Huawei proposes challenges to the entire society while taking into account both industrial challenges and scientific value, in order to encourage exploration, openness, creative thinking, and charting new direction based on the spirit of "Let a hundred flowers bloom, a hundred schools of thought contend."

This is to certify that professor Wang Kaiwei has made valuable contributions to the Hardware Engineering challenge "Motion Vector Estimation Based on Event Cameras." Given the contradiction between high-frame-rate detection requirements and the limited computing power of mobile phones, professor Wang, instead of following the traditional deep learning model-based detection approach, proposed a high-frame-rate and high-accuracy motion vector detection solution that combines image and event information.

编码: HW00269

3. 主要个人荣誉清单

● 刘华锋-国家自然基金委杰出青年、浙江省万人计划杰出人才

● 郭敏-海外优青

● 王晓萍-浙江省级优秀教师、宝钢优秀教师、教育部工程教育认证 专家

(二) 强强合作,构建高质量育人新格局

- 1. 加强国际合作广度,提升教育平台质量
- 1.1 建立实体合作平台
- 浙大医学 PET 中心成立

● 浙大-滨松国际光子学实验室成立

1.2 互派互访,合作关系不断巩固与升级

● 兼任教师示例

追光逐梦 树栽邦国 俊采星驰 天下来同

当前位置: 首页 | 新闻动态

日本滨松昼马明社长客座教授受聘仪式及学术报告会举行

发布者: 系统管理员 发布时间: 2013-10-15 浏览次数: 16

2013年10月11日,日本演松星马明社长客座教授受聘仪式及学术报告会在光电系举行。浙江大学党委副书记、纪委书记周台平教授,科学院院士唐孝成教授。浙江大学光电系主任童利明教授,光电系副系主任白剑

2019年10月1日,日本港灣區与 即比长客區政務受權仪区从李木格曾仓还地租基部行。浙江子李克島市记,纪秦书记用尚平教授、科李和规则上最幸越来想。浙江大李光电基主任重制等政策,光电系副基主任白剑 被投,外争也把他就要他,满地国际产品全域社大等区域企为。 会议开始,用容平副书记使于星马明社长客座教授荣誉等号,接着用谷平副书记他了评选,用副书记对今后日本课松公司与浙江大学的长期合作充满了信心,同时也对漂松公司为浙江大学学生的培养所做出的灵献 表示了各部,接下来,星马群比长假了排出。表达了海北公司现实长是中游打工学进行特权资格合作的原思。同时也对浙江大学的长期合作充满了海经营,经营不了海路, 着后是马野社长假了李木相思,将原始自且是,了对他的规范,这次海洋中的高温的印度用比较大开展探索主席的的基本完全开发。深处公安于不同发展地产业以达到探究人关末和彻域的目的的探索和想法。同 时也介绍演松公司的统米光子学以及激光技术等领域的研究开发。令在场的同学受益匪法、最后同学们也提出了自己的问题与星岛马昭社长进行了深入的交流与互动。

地址: 杭州市浙大路38号浙江大学玉泉校区第三教学大楼 电话: 0571-87951197 邮箱: optzju@zju.edu.cn

(2013年日本滨松昼马明社长兼任浙江大学客座教授)

● 赴日参观交流示例

(浙江大学光电科学与工程学院学生到日本滨松中央研究所交流学习)

● 来华合作交流示例

(浙江大学光电科学与工程学院成立 65 周年庆典大会上,滨松光子学商贸 (中国)有限公司向浙江大学捐赠 100 万元用于支持全国大学生光电设计竞赛等人才培养工作。)

不安全 — opt.zju.edu.cn — 无痕浏览

(日本滨松公司成员到浙江大学光电科学与工程学院交流)

1.3 联合培养研究生清单

● 共100余人,示例为部分联合培养契约书

研究受入契約書

本契約は、浙江大学と浜松ホトニクス株式会社(以下HPKと称する)が、2004年7月に取り 交わした「浙江大学博士研究生の受入に関する協議書」に基づき、2022年11月に締結したもので ある。

- HPKは中国における光技術の進歩及び国民福祉の向上に寄与することを目的と し、浙江大学のホトニクス分野の大学院生を受け入れ、その研究活動に協力する。
- 研究期間は別紙「研究実施予定表」に基づき、日本入国日から一年間と 二、期間及び内容 し、延長の必要がある場合は再契約する。研究テーマは「深層学習によるPET画像再構成の研 究」である。HPKは労働などのサービス及び本契約に関係ない課題を大学院生 万一鳴に要 求してはならない。
- 三、日本国法令・慣習ならびにHPK就業規則の遵守 万一鳴はHPKに滞在中、日本国法令・ 慣習及びHPK就業規則に従わなくではならない。HPKは随時日本国法令・慣習及びHPK 就業規則の遵守を万一鳴に忠告しなくてはならない。
- HPKは「研究(研修)生受入確認書」に基づき、本契約の遂行に関わる必要諸費 用を負担する。また、研究期間中に国内外出張が必要な場合は、HPK就業規則に準じてHP
- 五、機密保持 万一鳴はHPKが提供した秘密情報(以下情報と称する。ただし、公知のものは除 く) を保持し、いかなる第三者にその情報を漏らさぬよう充分注意して取り扱わなければなら ない。万一鳴がHPKの書面に許可なしで自分の利益または第三者のために情報を使用しては ならないものとする。
- 六、知的財産 本契約期間中、万一鳴が単独またはHPKと共同でなした発明・考案・著作そ の他すべての知的財産はHPKに帰属する。
- 七、報告 万一鳴は本契約期間中に行った全ての研究の要約を中国に帰国する前にHPKに提出 しなければならない。
- 本契約に定めのない事項については、双方誠意をもって協議の上決定する。本契 約五、六は本契約終了後も5年間効力を持つものとする。

上記契約の締結の証として、本書を二通作成し各一通を保有する。

2022年11月 30 日

浜松ホトニクス株式会社

浙江大学 光電情報工学系

執行役員 中央研究所長

教授

本契約は、浙江大学と浜松ホトニクス株式会社(以下HPKと称する)が、2004年7月に取り交 わした「浙江大学博士研究生の受入に関する協議書」に基づき、2022年11月に締結したものである。

- HPKは中国における光技術の進歩及び国民福祉の向上に寄与することを目的とし、 一、目的 浙江大学のホトニクス分野の大学院生を受け入れ、その研究活動に協力する。
- 二、期間及び内容 研究期間は別紙「研究実施予定表」に基づき、日本入国日から一年間とし、 延長の必要がある場合は再契約する。研究テーマは「FPGAによるリザバーコンピューティング の研究」である。HPKは労働などのサービス及び本契約に関係ない課題を大学院生 王远に要 求してはならない。
- 三、日本国法令・慣習ならびにHPK就業規則の遵守 王远はHPKに滞在中、日本国法令・慣習 及びHPK就業規則に従わなくてはならない。HPKは随時日本国法令・慣習及びHPK就業規 則の遵守を王远に忠告しなくてはならない。
- HPKは「研究(研修)生受入確認書」に基づき、本契約の遂行に関わる必要諸費用 四、経費 を負担する。また、研究期間中に国内外出張が必要な場合は、HPK就業規則に準じてHPKが 負担する。
- 五、機密保持 王远はHPKが提供した秘密情報(以下情報と称する。ただし、公知のものは除く) を保持し、いかなる第三者にその情報を漏らさぬよう充分注意して取り扱わなければならない。 王远がHPKの書面に許可なしで自分の利益または第三者のために情報を使用してはならない ものとする。
- 本契約期間中、王远が単独またはHPKと共同でなした発明・考案・著作その他 六、知的財産 すべての知的財産はHPKに帰属する。
- 七、報告 王远は本契約期間中に行った全ての研究の要約を中国に帰国する前にHPKに提出しな ければならない。
- 本契約に定めのない事項については、双方誠意をもって協議の上決定する。本契約 八、その他 五、六は本契約終了後も5年間効力を持つものとする。

上記契約の締結の証として、本書を二通作成し各一通を保有する。

2022年11月 30日

浜松ホトニクス株式会社

浙江大学 光電情報工学系

豊田 暗義

執行役員 中央研究所長

教授

F 32

王远

本契約は、浜松ホトニクス株式会社(以下HPKと称する)と浙江大学光電情報工学科が、1998年3月に取り交わした「共同研究に関する契約書」に基づき、2001年4月に締結したものである。

- 一、目的 HPKは中国における光技術の進歩及び国民福祉の向上に寄与することを目的とし、浙江大学のホトニクス分野の大学院生を受け入れ、その研究活動に協力する。
- 二、期間及び内容 研究期間は別紙「研究実施予定表」に基づき、2001年4月1日から2002年3月31日までとし、延長の必要がある場合は再契約する。研究テーマは「半導体レーザーアレーによる固体レーザーの発振動特性の解明」である。HPKは労働などのサービス及び本契約に関係ない課題を大学院生呉翔に要求してはならない。
- 四、安全保障輸出管理 HPKは、事前に権限のある官庁の承認を得ることなく、呉翔に日本法令で定める戦略物資に関する技術を開示してはならない。
- 五、経費 HPKは別紙「研究(研修)生受入確認書」に基づき、具翔に月額¥75,000を生活費として支給する。研究期間中に国内外出張が必要な場合は、HPK就業規則に準じてHPKが負担する。
- 六、機密保持 呉翔はHPKが提供した秘密情報(以下情報と称する。ただし、公知のものは除く)を保持し、いかなる第三者にその情報を漏らさぬよう充分注意して取り扱わなければならない。 呉翔がHPKの書面に許可なしで自分の利益または第三者のために情報を使用してはならないものとする。
- 七、知的財産 本契約期間中、呉翔が単独またはHPKと共同でなした発明・考案・著作その他すべての知的財産はHPKに帰属する。
- 八、報告 具翔は本契約期間中に研究した全ての要約を中国に帰国する前にHPKに提出しなければならない。
- 九、その他 本契約に定めのない事項については、双方誠意をもって協議の上決定する。本契約六、七 は本契約終了後も 5年間効力を持つものとする。

上記契約の締結の証として、本書を二通作成し各一通を保有する。

浜松ホトニクス株式会社

書馬 輝夫

代表取締役社長

浙江大学光電情報工学科

劉旭

主任教授

呉 翔

本契約は、浜松ホトニクス株式会社(以下HPKと称する)と浙江大学光電情報工学科が、1998年3月 に取り交わした「共同研究に関する契約書」に基づき、2001年4月に締結したものである。

- 一、目的 HPKは中国における光技術の進歩及び国民福祉の向上に寄与することを目的とし、浙江大 学のホトニクス分野の大学院生を受け入れ、その研究活動に協力する。
- 二、期間及び内容 研究期間は別紙「研究実施予定表」に基づき、2001年4月1日から2002年3月31 日までとし、延長の必要がある場合は再契約する。研究テーマは「微弱光計測の生物分野への応用研 究」である。HPKは労働などのサービス及び本契約に関係ない課題を大学院生李博に要求してはなら ない。
- 三、日本国法令・慣習ならびにHPK就業規則の遵守 李博はHPKに滞在中、日本国法令・慣習及び HPK就業規則に従わなくてはならない。HPKは随時日本国法令・慣習及びHPK就業規則の遵守を 李博に忠告しなくてはならない。
- 四、安全保障輸出管理 HPKは、事前に権限のある官庁の承認を得ることなく、李博に日本法令で定 める戦略物資に関する技術を開示してはならない。
- 五、経費 HPKは別紙「研究(研修)生受入確認書」に基づき、李博に月額¥75,000を生活費として支 給する。研究期間中に国内外出張が必要な場合は、HPK就業規則に準じてHPKが負担する。
- 六、機密保持 李博はHPKが提供した秘密情報(以下情報と称する。ただし、公知のものは除く)を保持 し、いかなる第三者にその情報を漏らさぬよう充分注意して取り扱わなければならない。李博がHPKの 書面に許可なしで自分の利益または第三者のために情報を使用してはならないものとする。
- 七、知的財産 本契約期間中、李博が単独またはHPKと共同でなした発明・考案・著作その他すべて の知的財産はHPKに帰属する。
- 八、報告 李博は本契約期間中に研究した全ての要約を中国に帰国する前にHPKに提出しなければ ならない。
- 九、その他 本契約に定めのない事項については、双方誠意をもって協議の上決定する。本契約六、七 は本契約終了後も 5年間効力を持つものとする。

上記契約の締結の証として、本書を二通作成し各一通を保有する。

浜松ホトニクス株式会社

浙江大学光電情報工学科

晝馬 輝夫

代表取締役社長

劉旭 主任教授

本契約は、疾松ホトニノス保式芸在は、下田下民と称するだる所に大学元竜情報工学科が、1008年8月に取り交わした「共同研究に関する契約書」に基づき、2002年8月に締結したものである。

- 一、目的 HPKは中国における光技術の進歩及び国民福祉の向上に寄与することを目的とし、浙江大学のホトニクス分野の大学院生叶必卿を受け入れ、その研究活動に協力する。
- 二、期間及び内容 研究期間は別紙「研究実施予定表」に基づき、2003年1月6日から2003年12月2 8日までとし、延長の必要がある場合は再契約する。研究テーマは「空間光変調器を用いたレーザ光 制御の研究」である。HPKは労働などのサービス及び本契約に関係ない課題を大学院生叶必郷に要求してはならない。
- 三、日本国法令・慣習ならびにHPK就業規則の遵守 叶必卿はHPKに滞在中、日本国法令・慣習及びHPK就業規則に従わなくてはならない。HPKは随時日本国法令・慣習及びHPK就業規則の遵守を叶必卿に忠告しなくてはならない。
- 四、安全保障輸出管理 HPKは、事前に権限のある官庁の承認を得ることなく、叶必卿に日本法令で 定める戦略物資に関する技術を開示してはならない。
- 五、経費 HPKは別紙「研究(研修)生受入確認書」に基づき、叶必卿に月額¥75,000を生活費として支給する。研究期間中に国内外出張が必要な場合は、HPK就業規則に準じてHPKが負担する。
- 六、機密保持 叶必卿はHPKが提供した秘密情報(以下情報と称する。ただし、公知のものは除く)を保持し、いかなる第三者にその情報を漏らさぬよう充分注意して取り扱わなければならない。叶必卿がHPKの書面に許可なしで自分の利益または第三者のために情報を使用してはならないものとする。
- 七、知的財産 本契約期間中、叶必卿が単独またはHPKと共同でなした発明・考案・著作その他すべての知的財産はHPKに帰属する。
- 八、報告 叶必卿は本契約期間中に研究した全ての要約を中国に帰国する前にHPKに提出しなければならない。
- 九、その他 本契約に定めのない事項については、双方誠意をもって協議の上決定する。本契約六、 七は本契約終了後も5年間効力を持つものとする。

上記契約の締結の証として、本書を二通作成し各一通を保有する。

浜松ホトニクス株式会社

浙江大学光電情報工学科

畫馬 輝夫

代表取締役社長

劉旭

主任教授

叶 必卿

大学院生

ver no you

本契約は、浜松ホトニクス株式会社(以下HPKと称する)と浙江大学光電情報工学科が、1998年3月に取り入わした「共同研究に関する契約書」に基づき、2002年8月に締結したものである。

- 一、目的 HPKは中国における光技術の進歩及び国民福祉の向上に寄与することを目的とし、浙江大学のホトニクス分野の大学院生田毅を受け入れ、その研究活動に協力する。
- 二、期間及び内容 研究予定期間は別紙「研究実施予定表」に基づき、2003年1月6日から2003年12 月28日までとし、延長の必要がある場合は再契約する。研究テーマは「放射線イメージングに関する研究」である。HPKは労働などのサービス及び本契約に関係ない課題を大学院生田毅に要求してはならない。
- 三、日本国法令・慣習ならびにHPK就業規則の遵守 田毅はHPKに滞在中、日本国法令・慣習及び HPK就業規則に従わなくてはならない。HPKは随時日本国法令・慣習及びHPK就業規則の遵守を 田毅に忠告しなくてはならない。
- 四、安全保障輸出管理 HPKは、事前に権限のある官庁の承認を得ることなく、田毅に日本法令で定める戦略物資に関する技術を開示してはならない。
- 五、経費 HPKは別紙「研究(研修)生受入確認書」に基づき、田毅に月額¥75,000を生活費として支給する。研究期間中に国内外出張が必要な場合は、HPK就業規則に準じてHPKが負担する。
- 六、機密保持 田毅はHPKが提供した秘密情報(以下情報と称する。ただし、公知のものは除く)を保持し、いかなる第三者にその情報を漏らさぬよう充分注意して取り扱わなければならない。田毅がHPKの書面に許可なしで自分の利益または第三者のために情報を使用してはならないものとする。
- 七、知的財産 本契約期間中、田毅が単独またはHPKと共同でなした発明・考案・著作その他すべての 知的財産はHPKに帰属する。
- 八、報告 田毅は本契約期間中に研究した全ての要約を中国に帰国する前にHPKに提出しなければならない。
- 九、その他 本契約に定めのない事項については、双方誠意をもって協議の上決定する。本契約六、七 は本契約終了後も 5年間効力を持つものとする。

上記契約の締結の証として、本書を二通作成し各一通を保有する。

浜松ホトニクス株式会社

浙江大学光電情報工学科

畫馬 輝夫

代表取締役社長

劉 旭 主任教授

本契約は、浙江大学と浜松ホトニクス株式会社(以下HPKと称する)が、2004年7月に取り交わした 「浙江大学博士研究生の受入に関する協議書」に基づき、2012年6月に締結したものである。

- 一、目的 HPKは中国における光技術の進歩及び国民福祉の向上に寄与することを目的とし、浙江大学のホトニクス分野の大学院生を受け入れ、その研究活動に協力する。
- 二、期間及び内容 研究期間は別紙「研究実施予定表」に基づき、日本入国日から一年間とし、延長の必要がある場合は再契約する。研究テーマは「難溶性薬物のナノ粒子化に関する研究」である。HPK は労働などのサービス及び本契約に関係ない課題を大学院生潘孫強に要求してはならない。
- 三、日本国法令・慣習ならびにHPK就業規則の遵守 潘孫強はHPKに滞在中、日本国法令・慣習及び HPK就業規則に従わなくてはならない。HPKは随時日本国法令・慣習及びHPK就業規則の遵守を 潘孫強に忠告しなくてはならない。
- 四、経費 HPKは別紙「研究(研修)生受人確認書」に基づき、本契約の遂行に関わる必要諸費用を負担する。また、研究期間中に国内外出張が必要な場合は、HPK就業規則に準じてHPKが負担する。
- 五、機密保持 潘孫強はHPKが提供した秘密情報(以下情報と称する。ただし、公知のものは除く)を保 持し、いかなる第三者にその情報を漏らさぬよう充分注意して取り扱わなければならない。潘孫強がHP Kの書面に許可なしで自分の利益または第三者のために情報を使用してはならないものとする。
- 六、知的財産 本契約期間中、潘孫強が単独またはHPKと共同でなした発明・考案・著作その他すべての知的財産はHPKに帰属する。
- 七、報告 潘孫強は本契約期間中に研究した全ての要約を中国に帰国する前にHPKに提出しなければならない。
- 八、その他 本契約に定めのない事項については、双方誠意をもって協議の上決定する。本契約五、六 は本契約終了後も5年間効力を持つものとする。

上記契約の締結の証として、本書を二通作成し各一通を保有する。

2012年 6月 日

浜松ホトニクス株式会社

浙江大学 光電情報工学系

意思明

畫馬 明 代表取締役社長 刘华锋

劉 華鋒 教授

潘孙强

潘 孫強 大学院生

1.4 联合发表论文清单

● 联合发表论文近80篇,示例为部分联合发表的论文列表

序号	部分联合发表的论文		
1	Li F, Mukohzaka N, Yoshida N, et al. Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display[J]. Optical review, 1998, 5: 174-178.		
2	Zhang H, Tsuchiya Y, Urakami T, et al. Time integrated spectroscopy of turbid media based on the microscopic Beer–Lambert law: consideration of the wavelength dependence of scattering properties[J]. Optics communications, 1998, 153(4-6): 314-322.		
3	Nagai S, Watanabe M, Shimoi H, et al. A new compact position-sensitive PMT for scintillation detectors[J]. IEEE Transactions on nuclear Science, 1999, 46(3): 354-358.		
4	Zhang H, Urakami T, Tsuchiya Y, et al. Time integrated spectroscopy of turbid media based on the microscopic Beer-Lambert law: application to small-size phantoms having different boundary conditions[J]. Journal of Biomedical Optics, 1999, 4(1): 183-190.		
5	Igasaki Y, Li F, Yoshida N, et al. High efficiency electrically-addressable phase-only spatial light modulator[J]. optical review, 1999, 6: 339-344.		
6	刘华锋, 鲍超. PET 探测器的现状及发展趋势[J]. 仪表技术与传感器, 2000, (7): 39-41.		
7	刘华锋, 鲍超. PET 用新型深度编码探测器设计[J]. 光子学报, 2000, 29(6): 564-568.		
8	Liu H, Bao C, Watanabe M, et al. Investigation of ISO scintillators for high-resolution PET detectors[J]. Acta Photonica Sinica, 2000, 29(5): 449-453.		
9	刘华锋,鲍超,山下贵司.新型位置灵敏光电倍增管的性能测量(英文)[J].高能物理与核物理,2000,(09):875-879.		
10	刘华锋.小动物用 PET 系统的新型位敏型探测器的原型研究 (英文)[J]. 仪器仪表学报, 2001 (2): 118-121.		
11	刘华锋.晶体表面处理对用于PET的一种深度检出型探测器的时间响应特性的影响 (英文)[J]. 核电子学与探测技术, 2001, 21(1): 9-13.		
12	倪永锋,泷口义浩,青岛绅一朗,等.无透镜 Z-扫描测量系统及其在高阶 非线性研究中的应用(英文)[J].光电子·激光,2001(12):1253-1257.		
13	Liu H, Omura T, Watanabe M, et al. Development of a depth of interaction detector for γ-rays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 459(1-2): 182-190.		
14	李博,鲍超,施柏煊,等.α 和 β 晶型酞箐铜纳米颗粒的光谱研究[J].红外与毫米波学报, 2002, 021(004):257-260.		

1 17 1	李博, 鲍超, 施柏煊, 等. 两种晶型酞菁氧钒纳米颗粒的制备及形成机理[J]. 物理化学学报, 2002, 18(12): 1057-1061.		
16	Wu X, Wang Y, Takiguchi Y, et al. Analysis of beam properties in the neighbourhood of a double-heterostructure laser source[J]. Journal of Modern Optics, 2003, 50(8): 1225-1235.		
17	Wu X, Lu Z, Wang Y, et al. The beam properties of high-power InGaAs/AlGaAs quantum well lasers[J]. Optics & Laser Technology, 2003, 35(8): 621-626.		
18	Wu X, Ye Z, Lu Z, et al. Beam combining of a high-power laser diode bar on a temperature gradient heat sink[J]. Chinese Optics Letters, 2003, 1(2): 93-95.		
1 19 1	吴翔, 陆祖康, 王攸, 等. InGaAsP SBH 激光器光束质量的非傍轴分析 (英文)[J]. 光子学报, 2003, 32(11): 1308-1311.		
20	Mukozaka N, Ye B, Yoshtda N. Spatial temporal analysis of electrically-addressable phase-only spatial light modulator[J]. Optical review, 2003, 10: 361-365.		
21	Li B, Kawakami T, Hiramatsu M. Enhancement of organic nanoparticle preparation by laser ablation in aqueous solution using surfactants[J]. Applied Surface Science, 2003, 210(3-4): 171-176.		
22	吴翔,陆祖康,龙口义浩,等. 一种新型的大功率激光二极管棒光束耦合技术[C]//中国光学学会.大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集.浙江大学出版社,2004:4.		
23	吴翔,陆祖康,王攸. 大功率 InGaAs/AlGaAs SCH DQW 激光器光束质量因子 M~2 的研究[C]//中国光学学会.大珩先生九十华诞文集暨中国光学学会 2004 年学术大会论文集.浙江大学出版社,2004:4.		
24	Li B, Kawakami T, Hiramatsu M. Surfactant effects on optical absorption spectra of iron phthalocyanine nanoparticles in water[J]. Material research bulletin, 2004, 39(9): 1265-1269.		
25	Fukuchi N, Biqing Y E, Igasaki Y, et al. Oblique-incidence characteristics of a parallel-aligned nematic-liquid-crystal spatial light modulator[J]. Optical review, 2005, 12: 372-377.		
76	叶必卿, 陈军, 福智昇央, 等. 斜入射液晶空间光调制器的特性[J]. 中国激光, 2006, 33(5): 587-590.		
27	Li X, Yamauchi T, Iwai H, et al. Full-field quantitative phase imaging by white-light interferometry with active phase stabilization and its application to biological samples[J]. Optics letters, 2006, 31(12): 1830-1832.		
1 28 1	田毅,片部笃志,刘华锋,等.基于 IEC 标准的日本滨松 SHR22000 全身用 PET 扫描仪性能测试[J].高能物理与核物理,2006,(11):1123-1127.		
/9	叶必卿, 陈军, 原勉. 液晶空间光调制器的斜入射特性[J]. 中国激光, 2007, 34(3): 374-378.		
30	高飞,山田亮子,渡边光男,等.应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析[J].物理学报, 2009(5):8.		
31	Fei G, Ryoko Y, Mitsuo W, et al. An effective scatter correction method		

	based on single scatter simulation for a 3D whole-body PET scanner[J].		
	Chinese Physics B, 2009, 18(7): 3066.		
32	陈哲敏, 陈军, 山下丰, 等. 激光融血栓的光纤光栅监控实验研究[J]. Chinese Journal of Lasers, 2009, 36(4): 1020-1024.		
33	Ying N, Tachiiri Y, Tsuchiya H, et al. Responses of tiller growth and related genes expression in rice to red and blue radiation[J]. Biologia plantarum, 2009, 53: 188-190.		
34	Zeng X, Inoue T, Fukuchi N, et al. Parallel lensless optical correlator based on two phase-only spatial light modulators[J]. Optics Express, 2011, 19(13): 12594-12604.		
35	Huang C, Huang H, Toyoda H, et al. Correlation matching method for high-precision position detection of optical vortex using Shack—Hartmann wavefront sensor[J]. Optics express, 2012, 20(24): 26099-26109.		
36	王嵩, 上田之雄, 山下丰, 刘华锋. 自适应双重点阵 DOT 图像重建 [J]. 浙江大学学报: 工学版, 2013 (1): 102-108.		
37	Huang H, Huang C, Toyoda H, et al. Correlation matching method for optical vortex detection using Shack-Hartmann wavefront sensor[C]//Conference on Lasers and Electro-Optics/Pacific Rim. Optica Publishing Group, 2013: WO4_2.		
38	Dong W, Hirohata T, Nakajima K, et al. Near-field effect in the infrared range through periodic Germanium subwavelength arrays[J]. Optics Express, 2013, 21(22): 26677-26687.		
39	Dong W, Hirohata T, Nakajima K, et al. Enhanced and suppressed infrared transmission through germanium subwavelength arrays[J] Optics Express, 2013, 21(23): 28513-28522.		
40	Huang C, Zhang H, Huang H, et al. Error reduction method for singularity point detection using Shack–Hartmann wavefront sensor[J]. Optics Communications, 2013, 311: 163-171.		
41	Pan S, Takebe G, Suzuki M, et al. Nanonization of poorly water-soluble drug clobetasone butyrate by using femtosecond laser[J]. Optics Communications, 2014, 313: 152-156.		
42	Huang H, Luo J, Matsui Y, et al. Eight-connected contour method for accurate position detection of optical vortices using Shack–Hartmann wavefront sensor[J]. Optical Engineering, 2015, 54(11): 111302-111302.		
43	Luo J, Huang H, Matsui Y, et al. High-order optical vortex position detection using a Shack-Hartmann wavefront sensor[J]. Optics Express, 2015, 23(7): 8706-8719.		
44	Luo J, Huang H, Matsui Y, et al. Adaptive position detection of optical vortex using a Shack-Hartmann wavefront sensor[C]//Optifab 2015. SPIE, 2015, 9633: 598-608.		
45	Huang H, Luo J, Matsui Y, et al. Optical vortex position detection with a Shack-Hartmann wavefront sensor using extended closed contour method[C]//Complex Light and Optical Forces IX. SPIE, 2015, 9379: 70-78.		

46	Guo M, Chen L, Shen X, et al. System model enabling fast tomographic phase microscopy with total variation regularisation[J]. Physics in Medicine & Biology, 2015, 60(23): 9059.		
47	Yu X, Isobe T, Watanabe M, et al. Novel crystal timing calibration method based on total variation[J]. Physics in Medicine & Biology, 2016, 61(22): 7833.		
48	Wang T, Nakamoto K, Zhang H, et al. Reweighted anisotropic total variation minimization for limited-angle CT reconstruction[J]. IEEE Transactions on Nuclear Science, 2017, 64(10): 2742-2760.		
49	Wang D, Huang H, Toyoda H, et al. Topological charge detection using generalized contour-sum method from distorted donut-shaped optical vortex beams: Experimental comparison of closed path determination methods[J]. Applied Sciences, 2019, 9(19): 3956.		
50	Wang D, Huang H, Matsui Y, et al. Aberration-resistible topological charge determination of annular-shaped optical vortex beams using Shack–Hartmann wavefront sensor[J]. Optics express, 2019, 27(5): 7803-7821.		
51	Fang J, Ohba H, Hashimoto F, et al. Imaging mitochondrial complex I activation during a vibrotactile stimulation: A PET study using [18F] BCPP-EF in the conscious monkey brain[J]. Journal of Cerebral Blood Flow & Metabolism, 2020, 40(12): 2521-2532.		
52	Li Y, Watanabe M, Isobe T, et al. Simulation study of a brain PET scanner using TOF-DOI detectors equipped with first interaction position detection[J]. Physics in Medicine & Biology, 2022, 68(1): 015011.		
53	Zhuang R, Cai S, Mei Z, et al. Solution-grown BiI/BiI3 van der Waals heterostructures for sensitive X-ray detection[J]. Nature Communications, 2023, 14(1): 1621.		
54	Wang Y, Uchida K, Takumi M, et al. Reservoir computing for a MEMS mirror-based laser beam control on FPGA[J]. Optical Review, 2024, 31(2): 247-257.		
55	Feng X, Muhashi A, Onishi Y, et al. Transformer-CNN hybrid network for improving PET time of flight prediction[J]. Physics in Medicine & Biology, 2024, 69(11): 115047.		

● 部分论文首页示例

OPTICAL REVIEW Vol. 5, No. 3 (1998) 174-178

Phase Modulation Characteristics Analysis of Optically-Addressed Parallel-Aligned Nematic Liquid Crystal Phase-Only Spatial Light Modulator Combined with a Liquid Crystal Display

Fanghong Li,* Naohisa Mukohzaka, Narihiro Yoshida, Yasunori IGASAKI, Haruyoshi Toyoda, Takashi Inoue, Yuji Korayashi and Tsutomu Hara

Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamakita, Shizuoka, 434-8601 Japan (Received December 17, 1997; Accepted March 24, 1998)

An optically addressed parallel-aligned nematic-liquid-crystal spatial light modulator (PAL-SLM) has been studied as a dynamic phase-only light modulation device. The phase modulation characteristics of the PAL-SLM using a liquid crystal display (LCD) as an addressing mask were investigated by analyzing diffraction efficiencies resulting from binary gratings projected from the LCD. A more than 2-p phase-only modulation depth was achieved. The highest first-order diffraction efficiency of approximately 38% was also obtained; this is close to the theoretical limit. The experimental results of diffraction efficiencies depending on the phase modulation depth are in good agreement with the simulation for the system operation.

Key words: spatial light modulator, liquid crystal, amorphous silicon, phase modulation, liquid crystal display, diffraction efficiency

1. Introduction

There has recently been a great deal of interest in efficient phase-only modulators for applications in optical correlation systems, 1,0 reconfigurable computer-generated holograms, 0 optical interconnection, 0 phase contrast technique' and so forth, where the diffraction phenomenon of light is utilized. Phase information is more important than amplitude information due to its inherent high efficiency of transmission and high discrimination capability in the optical system. 1,0 Since liquid crystal displays (LCDs) are readily available inexpensively as a commercial component, they have been utilized for studies as phase-only modulators, 3,0 . In many applications, a dynamic range of at least 2π phase modulation is required, however, most LCDs at present cannot achieve 2π phase modulation depth.

To achieve this level, a nonpixelized, optically addressed, parallel-aligned nematic liquid-crystal spatial light modulator (PAL-SIM) has been developed. A large phase-only modulation depth based on the electro-optical characteristics of a PAL layer was obtained, and the diffraction efficiency with write-in sinusoidal gratings was studied.⁹

In programmable optical interconnections, a phase-only SLM is needed to store a real-time computer generated hologram (CGH). One way is to use a cathode ray tube (CRT) to address a CGH on a PAL-SLM. However, phase modulation depth of more than 2r cannot be obtained with the CRT due to its contrast, "furthermore, a CGH may suffer from distortion because of difficulty of correction in the electron lens of the CRT. For practical purposes, an LCD can be chosen to serve as an accurate addressing mask for the PAL-SLM. It thus becomes

necessary to study the phase modulation characteristics of the PAL-SLM in combination with the LCD.

In this paper we present the phase modulation characteristics of the LCD coupled PAL-SLM with write-in binary intensity gratings. Phase-only modulation depth exceeding 2π was achieved. High diffraction efficiency was also achieved which is close to the theoretical limit. The system operation was simulated, and the diffraction efficiencies depending on the phase modulation depth were in good agreement with the simulation.

2. PAL-SLN

Figure 1 shows the structure of the PAL-SLM. An amorphous silicon (a-Si:H) photo-conductive laver (6.8 μm) is used as the optical addressing material, and a PAL layer (8 µm) as the light modulation material. The birefringence (Δn) of the LC is approximately 0.2. A dielectric mirror is sandwiched between the LC and a-Si:H layers. enhancing the reflection performance of the device. The active area of the PAL-SLM is 20 mm×20 mm. In the PAL-SLM, the LC molecules are aligned parallel to two glass substrates without the applied electric field (off state) as shown in Fig. 2(a). With the applied electric field (on state), the molecules are tilted in the transmitting direction of the light beam while maintaining parallel alignment of the molecules as shown in Fig. 2(b). In this case, when the polarization direction of the read-out light is parallel to the LC molecule direction in the off-state, no modulation of the polarization state occurs and only the refractive index of LCs is changed with the change of write-in light intensity, so phase-only modulation occurs.

3. Phase Modulation Characteristics of LCD coupled PAL-SLM

3.1 Experimental Setup

The experimental setup for studying phase modulation characteristics of LCD coupled PAL-SLM is shown in Fig.

TOURNAL OF RIOMEDICAL OPTICS 4(1), 183-190 (TANUARY 1999).

TIME INTEGRATED SPECTROSCOPY OF TURBID MEDIA BASED ON THE MICROSCOPIC BEER-LAMBERT LAW: APPLICATION TO SMALL-SIZE PHANTOMS HAVING DIFFERENT BOUNDARY CONDITIONS

Hedong Zhang, † Tsuneyuki Urakami, † Yutaka Tsuchiya, ‡ Zukang Lu, † and Teruo Hiruma † †Zhejiang University, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, 310027, People's Republic of China; †Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita 343-8601, Japan

(Paper CDO-011 received May 28, 1998; revised manuscript received Nov. 18, 1998; accepted for publication Nov. 19, 1998.)

ABSTRAC

Continued work on time-integrated spectroscopy (TIS) is presented to quantify absorber concentrations in turbid media. We investigated the applicability of the TIS method to small-size media that have different boundary conditions by measuring two 20×20×50 mm² cuboid liquid tissue-like phantoms at various absorption levels (absorption coefficients of the phantom from 25×10² to 4.4×10² mm² at 782 mm and from 31×10² to 4.2×10² m² m² at 831 mm.) The scattering and absorbing solution was filled into ordinary and black-anodized aluminum containers to provide different boundary conditions. By means of a single equation, the absorber concentrations have been recovered within errors of a few percent in both cases. This demonstrates that the TIS method can quantify absorbers in small-size media having different boundary conditions, a 1998-Society of Pack-Official Instrumentation Provents; 1083-30869991011-61

Keywords tissue spectroscopy; time integrated spectroscopy; small-size media; boundary conditions.

1 Introduction

The measurement of optical properties, i.e., the absorption coefficient μ_a and the reduced scattering coefficient μ'_s , of biological tissues is attracting great interest in the biomedical field.1 Knowledge of these parameters provides important information, such as the metabolism and health status of living tissues, for both diagnostic and therapeutic applications. Up to now, a variety of methods have been developed for this purpose. Among them, methods based on the photon diffusion equation have been widely applied to measure tissues and tissue-like phantoms, allowing the estimation of μ_a and μ'_s from highly scattering media.²⁻⁵ However, due to inherent flaws in the photon diffusion theory, these methods encounter the following problems during practical applications. First, the photon diffusion equation treats the reduced scattering coefficient μ_s^1 and is therefore only valid in relatively large media in which enough scattering events occur so that photons lose their initial directionality. Second, in the derivation of the photon diffusion equation, one has to incorporate exact

Address all correspondence to Yutaka Tsuchiya. E-mail: tsuchy@crl.hpk.co.jp

descriptions of boundary conditions, such as zerorecommendated-index matched or mismatchedboundary conditions and exterior shapes of target media. Application of the photon diffusion equation is therefore restricted to media that have simple shapes." Many results show that significant errors can occur if the effect of the refractive index mismatched boundary is not properly taken into account." ¹⁰ The errors are more important when reemission from small-size media are measured, because the influence of the boundary increases as the size of media decreases. These problems thus challenge us to develop a new method for noninvasively quantifying optical parameters in small-size media having different boundary conditions.

The methods based on the microscopic Beer-Lambert law (MBL), which describes the survival probability of a photon by its zigzag path within the medium, are very simple and implicit for boundary conditions, exterior shapes, and sourcedetector separation. In the case of the MBL, the effects of scattering and absorbing are separated and a simple relation can be obtained between absorbing coefficient and observables such as attenuation

1083-3668/99/\$10.00 © 1999 SPIE

TOURNAL OF RIOMEDICAL OPTICS * JANUARY 1999 * VOL. 4 No. 1 183

^{*}State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, P.R. China. E-mail: Ifhw@crl.hpk.co.jp

Nuclear Instruments and Methods in Physics Research A 459 (2001) 182-190

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH

www.elsevier.nl/locate/nima

Development of a depth of interaction detector for γ -rays

H. Liu^a, T. Omura^b, M. Watanabe^{b,*}, T. Yamashita^b

aState Key Laboratory of Modern Optical Instrumentation, Zheijang University, Hangzhou 310027, People's Republic of China Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita City 434-8601, Japan

Received 17 March 2000; received in revised form 8 July 2000; accepted 22 July 2000

Abstract

A depth of interaction (DOI) detector for γ-rays has been developed for a high-resolution positron emission tomography (PET) system dedicated to small animal studies. The DOI detector consists of a double-layer array of lutetium oxyorthosilicate (LSO) crystals and a position-sensitive photomultiplier tube (PS-PMT). Hamamatsu R7600-C12, where the element size of the LSO array is 1.8 × 1.8 × 10 mm. In the LSO crystal block, the upper LSO array is placed on the lower LSO array with a shift of half the element pitch in both X and Y directions. Since the centroid of the output light distribution from each crystal element locates at a different position on the PS-PMT, the crystal element can be identified on the image plane derived from the centroid calculation. The performance of the DOI detector was measured in terms of its application to PET. Each crystal element is clearly separated on the position map so that a single bit of DOI information can be derived, as well as the position information. The timing resolution for the upper array was 0.98 ns in FWHM, and was 0.83 ns in FWHM for the lower array. The spatial resolution in coincidence was measured with a pair of DOI detectors at different incident angles of γ-rays. The averaged FWHM values were 1.4 mm at 0° and 3.4 mm at 30°, while those of the detector pair without DOI were 1.5 mm at 0° and 4.5 mm at 30°. It is confirmed that the DOI detector provides better spatial resolution for the oblique incidence angle of γ-rays, which results in improved PET resolution in the peripheral field of view (FOV). The experimental results show that the new DOI detector is applicable for high-resolution PET systems. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Radiation detector; Depth of interaction (DOI); Lutetium oxyorthosilicate (LSO); Position-sensitive photomultiplier tube (PS-PMT): Positron emission tomography (PET)

1. Introduction

Previous attempts at applying depth of interaction (DOI) detectors for γ-rays in the field of instruments for nuclear medicine have been reported, especially as a detector for positron emission tomography (PET). Recently, genetically treated ani-

E-mail address: watanabe@crl.hpk.co.jp (M. Watanabe).

mals such as transgenic mice have been used as

disease models. Researchers are especially interested in functional imaging on those animal disease models in vivo. In PET imaging of small animal species such as mice and rats, a technological difficulty exists in the realization of high resolution with high sensitivity. Many detector schemes have been proposed in order to achieve high spatial resolution close to physical limitations posed by the positron range effect and the angular deviation of annihilation γ -rays. One of the most promising schemes is the use of a position-sensitive photomultiplier tube 第32 卷第11 期 光子学报 2003年11月 ACTA PHOTONICA SINICA November 2003

Non-paraxial Analysis of the Beam Quality of InGaAsP Strip **Buried Heterostructure Lasers**

Wu Xiang¹, Lu Zukang¹, Wang You², Takiguchi Yoshihiro², Kan Hirofumi² 1 Chinese National Engineering & Technology Research Center for Optical Instrument, Zhejiang University, Hangzhou, 310027, P. R. China

2 Central Research Laboratory, Hamamatsu Photonics K. K., Hirakuchi 5000, Hamakita-City, Shizuoka-Pref., 434-8601, Japan

Abstract The horizontal beam quality factor M_v^2 of the TE₀₀ propagating mode for InGaAsP (λ = 1.3 µm) SBH lasers has been investigated. It has been shown that the optical fields penetrate deeply into the waveguide and cladding layers when the width of the active layer is smaller than emission wavelength, The field distributions outside the active layer will influence the beam quality factor. The calculated nonparaxial M^2 is larger than unity.

Keywords Strip buried heterodtructure lasers; Horizontal beam quality factor; Non-paraxial vetorial moment theory

CLCN TN248. 4 Document Code A

0 Introduction

Recently the beam quality factor M^2 was extended to the case of the non-paraxial beams [1-4]. Many researchers have investigated the vertical beam quality factor M_*^2 of the fundamental TE propagating mode for DH lasers and MOW lasers [5-7]. They concluded that M^2 would be smaller than unity when the thickness of the active layer is much smaller than the emission wavelength. In a recent paper, the beam quality of GaAs/Al, Ga, -, As strip buried heterostructure laser has been investigated [8]. It is shown that the horizontal beam quality factor M_{π}^2 of the fundamental TE_{∞} mode will be smaller than unity when the width of the active layer is smaller than 0. 31 times of the lasing wavelength. However, the optical field distributions in the waveguide and the cladding layers have not been taken into account in most of the investigations. It should be noted that the optical fields deeply penetrate into the waveguide and cladding layers when the thickness or width of the active layer is much smaller than emission wavelength. The field distributions outside the active layer will affect the beam waist as well as the beam divergence. Therefore, the errors in calculating M^2 should occur when one only takes the optical fields in the active layer of a laser diode into account

The aim of our study is to provide the comprehensive analysis and calculations for the horizontal beam quality factor M^2 of the fundamental TE₀₀ propagating mode for InGaAsP ($\lambda = 1.3 \mu m$) strip buried heterostructure (SBH) lasers.

Tel:0571-87951962-8001 Email:hsiang woo@ hotmail.com Received date 2002年12-16

1 Waveguide mode

Fig. 1 shows a schematic cross section of the waveguide of the InGaAsP-InP SBH laser, consisting of a $\lambda = 1.3$ µm active layer strip and a $\lambda = 1.1$ µm guiding layer with outer InP cladding layers[9]. The refractive indices of the active, guide and InP cladding layers at $\lambda = 1.3$ µm are $n_1 = 3.52$, $n_2 = 3.33$, and $n_{\circ} = 3.2$, respectively. Since the measured emission from the lasers is polarized with the electric vector parallel to the plane of the layers (TE polarization), only this polarization will be considered.

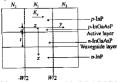


Fig. 1 Schematic cross section of the InGaAsP-InP SBH laser

Wave propagation can be studied by dividing the structure into two different regions. Region 1 represents a four-layer slab waveguide and Region 2 represents a three-layer slab waveguide. The effective refractive indices N_1 and N_2 for regions 1 and 2 are derived from the propagation constants B_1 and B_2 for the four- and three-layer slab waveguides as

$$N_1 = \beta_1/k_0$$
, $N_2 = \beta_2/k_0$ (1)
where $k_0 = 2\pi/\lambda$ and λ is the wavelength of radiation.

As shown in Fig. 2, the fields in the *i*th (i = 0.1). 2,3) layer of the waveguide structure in the Region 1 can be expressed as

 $E_{x}(x,z,t) = E_{x,t}(x) \exp\left[i(\omega t - \beta_{x}z)\right]$ (2) The complex TE amplitudes $E_{x,i}(x)$ can be expressed

^{*} Corresponding author. Tel.: + 81-053-586-7111; fax: + 81-

^{0168-9002/01/\$-} see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0168-9002(00)00939-6

第 33 卷 第 5 期 2006年5月

中 国 激 光 CHINESE JOURNAL OF LASERS Vol. 33, No. 5 May, 2006

文章编号: 0258-7025(2006)05-0587-04

斜入射液晶空间光调制器的特性

叶必卿¹,陈 军¹,福智昇央²,伊ヶ崎泰则²,井上卓²,原 勉 (1 浙江大学现代光学仪器国家重点实验室, 浙江 杭州 310027; 2 浜松光子株式会社, 日本)

摘要 用读出光斜入射到液晶空间光调制器(LC-SLM)的读出面,是一种有效的提高空间光调制器(SLM)读出效 率的方法。测量了读出光以不同角度入射到液晶空间光调制器的读出面上时,相位调制深度与写入光强的关系、 衍射效率与二值光栅对比度的关系。得到随着入射角度的增加,最大相位调制深度减小,而衍射效率变化并不明 显。在 45°时有最大相位调制深度 2.0936π 和 35.4%的正一级衍射效率。

关键词 信息光学;液晶空间光调制器;斜入射 中图分类号 TH 744 文献标识码 A

Oblique-Incidence Characteristic of Parallel-Aligned Nematic-Liquid-Crystal Spatial Light Modulator

YE Bi-qing1, CHEN Jun1, Norihiro Fukuchi2, Yasunori Igasaki2, Takashi Inoue2, Tsutomu Hara2

[1 State Key Laboratory of Modem Optical Instrumentation, Zhejiang University, Hangzhou, Zhejiang 310027, China 2 Hamamatsu Photonics K. K., Japan

Abstract It is a valid way to improve the read-out light efficiency of spatial light modulator that the incident readout light obliquely enters the read-out plane of the liquid crystal spatial light modulator. With different incident angles, the relations of the phase modulation depth and the write-in light intensity and of the diffraction efficiency and the contrast of the binary grating are measured. It is found that, with increasing incident angle, the maximum depth of the phase modulation decreases, but obvious change of the diffraction efficiency does not occur. With 45° incident angle, the maximum depth of the phase modulation reaches 2,0936π, and the positive first order diffraction

Key words information optics; liquid crystal spatial light modulator; oblique incidence

1 引 言

空间光调制器(SLM)在二维空间内可以对光 信息包括振幅、相位、偏振态三方面进行调制。液晶 空间光调制器就是利用液晶的电光效应来达到对光 波的调制,它已经在相关光学、自适应光学、光互连、 光束变换、光运算、光存储和神经网络[1~3]中得到广 泛的应用,并有希望在未来的光计算机中作为接口 器件[4]。因此它的光调制特性越来越为人们所关 注。

当空间光调制器工作在正入射情况时,必须利

收稿日期:2005-05-26: 收到修改稿日期:2005-11-13

作者简介:叶必卿(1978—),女,浙江杭州人,浙江大学博士研究生,主要从事激光与非线性光学的研究。E-mail:canoo@ zju, edu, cn

用分光镜使得入射光和反射光分离,以使得到的反 射光光强被极大衰减,在一定程度上限制了它的应 用。为了得到更强的反射光强,采用读出光斜入射 模式是一种有效的方法。虽然对于正入射工作模式 的特性研究已经有大量报道[5,6],但空间光调制器 的斜入射调制特性研究尚少报道。本文测量了光寻 址液晶空间光调制器的斜入射光学调制特性,在 45°入射时得到最大 2.0936π 的相位调制深度和 35.4%的正一级衍射效率。

第 36 卷 第 4 期 2009年4月

中国激光 CHINESE JOURNAL OF LASERS Vol. 36, No. 4 April, 2009

文章编号: 0258-7025(2009)04-1020-05

激光融血栓的光纤光栅监控实验研究

陈哲敏1 陈 军1 山下丰2 山下大浦2 清水良幸2

(1浙江大学现代光学国家重占实验室 浙江 杭州 310027;2 日本淀粉光子柱式会社中央研究所 淀北平口 5000 434 日本)

摘要 实验研究了光纤光栅(FBG)传感器在激光融血栓模拟过程中的监控作用。在激光融血栓模拟过程中,由于 血液对激光的吸收,产生了空化气泡,气泡的产生和崩溃的过程中激发出了冲击波。光纤光栅传感系统以波长可 调的半导体分布反馈(DFB)激光器为光源,采用边缘滤波解调的方式,实现了对冲击波的有效测量。实验中,冲击 波响应峰值随融血栓激光功率的增加而上升。实验中还发现血栓消融后的血液中光纤光栅冲击波响应与没有血 栓时的冲击波响应类似。根据这个类似性来判断血栓是否消融。模拟实验中测量到的激光融血栓时间为 23s。 关键词 光纤光学;光纤光栅;冲击波;激光;融血栓

中图分类号 TN253 文献标识码 A doi: 10.3788/CJL20093604.1020

Experimental Research on Fiber Bragg Grating Based Monitor for Laser Thrombolysis in vitro

Chen Zhemin¹ Chen Jun¹ Yamashita Yutaka² Yamashita Daisuke² Shimizhu Yoshiyuki² ¹ State Key Laboratory of Modern Optical Instruments, Zhejiang University, Hangzhou, Zhejiang 310027, China ² Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita 434, Japan

Abstract The experimental investigation of the fiber Bragg grating (FBG) sensor in monitoring action for the laser thrombolysis is introduced. In laser thrombolysis, the pulsed laser is absorbed by blood, leading to cavitating bubbles. The shock wave is generated during bubble expansion and collapse. With a tunable distributed feed back (DFB) LD laser as the light source and an edge filtering demodulation, the shock wave was measured by FBG based sensing system. In experiment, the peak power of the shock wave response increases with the laser power, and the FBG responsibility for the shock wave in the blood after ablation of clot is similar to that in blood without clot. According to this similarity, whether the clot is ablated or not can be distinguished. In the in vitro experiment, the measured ablation time is 23 s.

Key words fiber optics; fiber Bragg grating; shock wave; laser; thrombolysis

1 引 言

脑中风已经成为我国第二大疾病致死因素[1], 而血栓是引起脑中风的主要因素。目前治疗脑中风 的医疗手段中,激光融血栓治疗方式已经被认为是 可行而有效的[2~4]。激光融血栓是利用光纤将激光 导入到血管中实现血栓融解的一种医学治疗方法。 为避免对其他组织产生破坏性影响,在激光医疗过 程中需要严格控制激光的功率以及激光照射时间, 因此实时的激光融血栓监控系统是必需的。

目前大部分激光融血栓监控的主要方法有

CT,核磁共振以及血管造影[5,6],但它们都有一定的 局限性,因此需要新型的医用传感器实现激光融血 栓的计程监控,

在激光医疗应用场合,相对于当前大部分的有 源医用传感器,光纤光栅(FBG)传感器的电磁免疫 特性可以有效地避免强电磁干扰而引起的测量误 差[7~10]。由于其体积小、精度高以及与光纤的可兼 容性等特性,使光纤光栅成为激光融血栓过程监测 中的理想传感器。在激光融血栓过程中,由于光热 效应,血液吸收脉冲激光产生气泡;在气泡的产生和

收稿日期: 2008-07-09; 收到修改稿日期: 2008-07-11

作者简介: 陈哲敏(1982-),男,博士研究生,主要从事光纤传感和激光技术的研究。E-mail;czmasm@hotmail.com 导师简介: 陈 军(1946-),女,教授,博士生导师,研究方向为激光技术和非线性光学。E-mail; chenjunl@zju.edu.cn

Correlation matching method for high-precision position detection of optical vortex using Shack-Hartmann wavefront sensor

Chenxi Huang, 1* Hongxin Huang, 2 Haruyoshi Toyoda, 2 Takashi Inoue, 2 and Huafeng

¹State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, Zhejiang, 310027, China ²Central Research Laboratory, Hamamatsu Photonics K. K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan

Abstract: We propose a new method for realizing high-spatial-resolution detection of singularity points in optical vortex beams. The method uses a Shack-Hartmann wavefront sensor (SHWS) to record a Hartmanngram. A map of evaluation values related to phase slope is then calculated from the Hartmanngram. The position of an optical vortex is determined by comparing the map with reference maps that are calculated from numerically created spiral phases having various positions. Optical experiments were carried out to verify the method. We displayed various spiral phase distribution patterns on a phase-only spatial light modulator and measured the resulting singularity point using the proposed method. The results showed good linearity in detecting the position of singularity points. The RMS error of the measured position of the singularity point was approximately 0.056, in units normalized to the lens size of the lenslet array used in the SHWS.

©2012 Optical Society of America

OCIS codes: (050.4865) Optical vortices; (230.6120) Spatial light modulators; (010.7350) Wave-front sensing.

References and links

- J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. Lond. A 336, 165-190 (1970).
- D. L. Fried and J. L. Vaughn, "Branch cuts in the phase function," Appl. Opt. 31(15), 2865–2882 (1992).
 E. O. Le Bigot, W. J. Wild, and E. J. Kibblewhite, "Branch point reconstructors for discontinuous light phase functions," Proc. SPIE 3381, 76-87 (1998).
- 4. D. L. Fried, "Branch point problem in adaptive optics," J. Opt. Soc. Am. A 15(10), 2759-2768 (1998).
- 5. J. Wu, H. Li, and Y. Li, "Encoding information as orbital angular momentum states of light for wireless optical communications," Opt. Eng. 46(1), 019701 (2007).
- 6. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207(1-6), 169-175 (2002)
- E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W. French, Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging," Opt. Lett. 33(2), 113-115 (2008).
- W. Wang, Y. Oiao, R. Ishijima, T. Yokozeki, D. Honda, A. Matsuda, S. G. Hanson, and M. Takeda "Constellation of phase singularities in a speckle-like pattern for optical vortex metrology applied to biological kinematic analysis," Opt. Express 16(18), 13908–13917 (2008).
- F. A. Starikov, G. G. Kochemasov, S. M. Kulikov, A. N. Manachinsky, N. V. Maslov, A. V. Ogorodnikov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, F. Y. Kanev, V. V. Atuchin, and I. S. Soldatenkov, "Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor," Opt. Lett. 32(16), 2291–2293 (2007).
- 10. C. Rockstuhl, A. A. Ivanovskyy, M. S. Soskin, M. G. Salt, H. P. Herzig, and R. Dandliker, "High-resolution measurement of phase singularities produced by computer-generated holograms," Opt. Commun. 242(1-3), 163-
- N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, "Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators," J. Opt. Soc. Am. A 25(7),
- D. R. Neal, J. Copland, and D. Neal, "Shack-Hartmann sensor precision and accuracy," Proc. SPIE 4779, 148–

#176135 - \$15.00 USD Received 13 Sep 2012; revised 26 Oct 2012; accepted 27 Oct 2012; published 5 Nov 2012 (C) 2012 OSA 19 November 2012 / Vol. 20, No. 24 / OPTICS EXPRESS 26099

Optics Communications 313 (2014) 152-156

Contents lists available at ScienceDirect **Optics Communications**

journal homepage: www.elsevier.com/locate/optcom

Nanonization of poorly water-soluble drug clobetasone butyrate by using femtosecond laser

Sungiang Pan a, Gen Takebe b, Masumi Suzuki b, Hisayoshi Takamoto b, Jianhong Ge a, Chong Liu a, Mitsuo Hiramatsu b

State Key Laboratory of Modern Optical Instrumentation, Zhejjang University, Hangzhou, Zhejjang 310027, China
 Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka 434-8601, Japan

ARTICLE INFO

Article history Received 12 September 2013 Received in revised form 7 October 2013 Accepted 12 October 2013 Available online 23 October 2013

Nanoparticle Poorly water-soluble drug Nanonization Femtosecond laser

ABSTRACT

Nanonization, which involves the formation of the drug with nanometer particle size, is an effective method to improve the dissolution rate and bioavailability of poorly water-soluble drugs. A pulsewidthtunable femtosecond laser was used to produce nanoparticles of clobetasone butyrate using poloxamer 188 as stabilizing agent. The effects of temperature and pulsewidth on the particle size and concentration were studied for the first time. The particle size and drug concentration dependence on the laser intensity and irradiation time were also investigated. Permeability test releaved that laser nanonization improved the drug permeability across Caco-2 cell monolayer. This laser nanonization method has a great potential to be used for new drug development,

© 2013 Elsevier B.V. All rights reserved

1. Introduction

A large fraction (~40%) of the new drug candidates identified through combinatorial screening programs is poorly watersoluble. Low water solubility of drugs leads to low dissolution rate and low bioavailability which present a major challenge to their clinical development [1,2]. The improvement of water solubility is an important task for pharmaceutical companies in developing new drugs.

Several approaches have been employed to improve water solubility of drugs, such as complexation with cyclodextrins [3], salt formation of ionizable drugs [4] and the use of co-solvents [5]. However, universal methods that can improve water solubility are still highly desirable. According to Noves-Whitney equation [6], nanonization reducing the particle size down to the nanometer size range is an effective method to increase dissolution rate and improve water solubility. Nanonization may be achieved either through bottom-up approach (chemical precipitation) or topdown approach. Top-down methods include media milling and high-pressure homogenization, which are used commercially. Nanonization of drugs to sub-micron level is achievable by using these two top-down methods [7-9]. However, contamination and heat generation are severe problems for these methods.

0030-4018/\$-see front matter © 2013 Elsevier B.V. All rights reserved.

Recently, nanonization of poorly water-soluble drug by using laser becomes increasingly popular, which has the advantages of non-contact and convenient. By using infrared nanosecond laser. cyclosporin A nanoparticles were produced, with high levels of the drug using polyvinyl pyrrolidone and sodium dodecyl sulfate as stabilizing agents. Cyclospoin A nanoparticles showed a spherical shape and their particle size was distributed uniformly around 200 nm [10]. With the benefit of ultrashort pulse-width and extremely high laser intensity, femtosecond laser ablation of poorly water-soluble drugs, and production of paclitaxel nanocrystals and megestrol acetate nanoparticles were achieved [11,12]. However, only the laser intensity effects were investigated

In this paper, a pulsewidth-tunable femtosecond laser was adopted to produce nanoparticles of poorly water-soluble drug. The effects of temperature and pulsewidth on the particle size and concentration were studied for the first time. The particle size and drug concentration dependence on the laser intensity and irradiation time were also investigated. The poorly water-soluble drug used was clobetasone butyrate (CB). CB is a corticosteroid used in dermatology, for treating skin inflammation. CB absorbed in quantities can produce both systemic and topical side effects. One of the approaches to reduce the adverse effects of CB is to enhance its permeability so as to reduce the topically applied dose. The nanoparticles of CB were produced by femtosecond laser irradiation, and the permeability improvement by laser nanonization was verified

^{*}Corresponding author, Tel.: +81 535840250

doi:10.1088/0031-9155/60/23/9059

System model enabling fast tomographic phase microscopy with total variation regularisation

Min Guo¹, Lijun Chen¹, Xiaoyan Shen¹, Hidenao Iwai², Yunmei Chen³ and Huafeng Liu^{1,2,4}

- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027 China
- ² 7th Research Group, Central Research Laboratory, Hamamatsu Photonics K K, Hamamatsu 430-8587, Japan
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

E-mail: liuhf@zju.edu.cn

Received 18 July 2015, revised 7 September 2015 Accepted for publication 22 September 2015 Published 12 November 2015

Abstract

Tomographic phase microscopy (TPM) facilitates three-dimensional imaging of live cells based on quantitative measurement of the distribution of the refractive index, but without the need for specific staining. However, the limited imaging speed and the anisotropic resolution of the reconstructed refractive index map remain major obstacles to the extension and further application of TPM. To address these obstacles, we first formulate a general measurement model that linearises the relationship between the measurement data and refractive index map based on a system matrix. In this way, the measurement system is interpreted as a linear system in a complete manner. Then we propose a reconstruction framework for retrieving the refractive index map from the measurement data with reduced angular sample frequency and limited angular coverage of illumination. The framework aims to transform the reconstruction task into an optimisation scheme based on total variation norm regularisation, followed by an efficient solution using the accelerated alternating direction method of multipliers algorithm. Using this method, only sparse angular illuminations need to be collected, thus speeding up the imaging process. We obtained experimental results from both cell-mimic phantom data and real measurement data, which showed that the proposed method can improve the imaging speed while still providing refractive index images with better quality compared with a conventional reconstruction method.

0031-9155/15/239059+19\$33.00 © 2015 Institute of Physics and Engineering in Medicine Printed in the UK

9059

OPEN ACCESS

IOP Publishing | Institute of Physics and Engineering in Medicine

Physics in Medicine & Biology

Phys. Med. Biol. 61 (2016) 7833-7847

doi:10.1088/0031-9155/61/22/7833

Novel crystal timing calibration method based on total variation

Xingjian Yu¹, Takashi Isobe², Mitsuo Watanabe² and Huafeng Liu^{1,3}

¹ State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China ² Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu-City 434-8601, Japan

E-mail: liuhf@zju.edu.cn

Received 14 May 2015, revised 22 September 2016 Accepted for publication 4 October 2016 Published 25 October 2016

Abstract

A novel crystal timing calibration method based on total variation (TV), abbreviated as 'TV merge', has been developed for a high-resolution positron emission tomography (PET) system. The proposed method was developed for a system with a large number of crystals, it can provide timing calibration at the crystal level. In the proposed method, the timing calibration process was formulated as a linear problem. To robustly optimize the timing resolution, a TV constraint was added to the linear equation. Moreover, to solve the computer memory problem associated with the calculation of the timing calibration factors for systems with a large number of crystals, the merge component was used for obtaining the crystal level timing calibration values. Compared with other conventional methods, the data measured from a standard cylindrical phantom filled with a radioisotope solution was sufficient for performing a high-precision crystal-level timing calibration. In this paper, both simulation and experimental studies were performed to demonstrate the effectiveness and robustness of the TV merge method. We compare the timing resolutions of a 22Na point source, which was located in the field of view (FOV) of the brain PET system, with various calibration techniques. After implementing the TV merge method, the timing resolution improved from 3.34 ns at full width at half maximum (FWHM) to 2.31 ns FWHM.

³ Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

0031-9155/16/227833+15\$33.00 @ 2016 Institute of Physics and Engineering in Medicine Printed in the UK

7833

⁴ Author to whom any correspondences should be addressed.

I INTRODUCTION

-RAY computed tomography (CT) plays a very important

A role in a variety of applications, such as medical imaging

for diagnosis and therapy, security checks, and product shape

examination for quality control. In addition to accurate and

robust image reconstruction, there is increasing interest in the

limited-angle problem because of attempts to: 1) reduce the

X-ray dose delivered to patients; 2) decrease the time required

for patients to remain still during a scan; and 3) address the

restricted scanning capabilities found in many facilities. For

such a severely ill-posed problem, accurate reconstruction is

very difficult to achieve. The application of standard ana-

lytic algorithms such as filtered back-projection (FBP) will

lead to conspicuous artifacts in reconstructed images, mainly

owing to insufficient information in the Fourier domain. How-

ever, a number of iterative techniques are more amenable to

problems of this type, including the algebraic reconstruction

technique (ART) and its variations [1]-[3]. Moreover, some

given prior information about the image object is frequently

assumed; this may include the sign, content, boundary, and

smoothness needed to constrain the problem and effectively

reduce artifacts [4]-[6]. Many efforts have been made to tackle

this problem, and numerous algorithms have been proposed.

made several years ago, in which under some conditions,

high-quality signals/images can be reconstructed from far

fewer measurements than that considered necessary according

to the Nyquist sampling theory [7], [8]. The key point of

CS is to seek a proper space so that the signal can be

sparsely represented. The spaces typically used in the image reconstruction field are discrete gradient space [8] and wavelet

space [9]. In addition, some researchers have used other spaces

For most natural images, especially medical images, rapid

variations may occur only at the boundaries of some structures.

Thus, an image itself might not be sparse but its gradient

image could be [8], [12]. A special case of CS that utilizes this property is total variation (TV) minimization, which is

frequently used for image reconstruction in the field of sparse-

view CT. This model is also known as "ROF model" because

it was first proposed by Rudin et al. in 1992 [13]. The TV of

an image is the l₁-norm of its gradient image, and is usually

minimized subject to the data fidelity term obtained from

such as curvelet space [10] and shearlet space [11].

A breakthrough referred to as compressed sensing (CS) was

Reweighted Anisotropic Total Variation Minimization for Limited-Angle CT Reconstruction

Ting Wang, Katsuhiro Nakamoto, Heye Zhang, and Huafeng Liu

Abstract-Limited-angle problems encountered in computed tomography (CT) often necessitate image reconstruction using projection data from a particular angle range. To solve this severely ill-posed problem, prior information is utilized to constrain the problem. As a special case of compressed sensing, a total variation (TV) transform with an l_1 -norm image gradient is utilized in most cases, and manages to obtain very impressive reconstruction results. However, it is unfit for limited-angle problems owing to its isotropic property. This paper proposes a new iteratively reweighted anisotropic TV (ATV) method, in which a reweighted technique is incorporated into the idea of ATV. Our strategy successfully combines their merits and results in significantly improved performance. By using the reweighted technique, we are able to approximate the most direct measure of sparsity— l_0 -norm—better than l_1 -norm. As a result, the property of image sparsity can be utilized more efficiently. Because TV is isotropic, which prevents detection of blurred edges caused by missing angle ranges and may weaken edgepreserving ability along nonblurred directions, we consider the angle range of the data as additional prior information by assigning different weights to different directions; this allows the anisotropic property to be utilized. Therefore, the blurred directions can be prevented from affecting edge detection, and better reconstruction results can be achieved. To demonstrate the advantages of our method, we perform reconstruction using projection data from phantom CT scans and actual CT scans. We conducted comprehensive comparison between our method and many existing TV-based methods. Both qualitative and quantitative results are presented.

Index Terms - Anisotropic total variation (ATV), compressed sensing (CS), image reconstruction, limited-angle CT, reweighted technique

Manuscript received August 23, 2017; accepted September 4, 2017. Date of publication September 8, 2017; date of current version October 17, 2017. This work was supported by in part by Hamamatsu Photonics K.K., Japan, in part by Zheijang University, China, in part by the National Natural Science Foundation of China under Grant 61427807 and Grant 61525106, in part by the National Key Technology Research and Development Program of China under Grant 2016YFC1300302, in part by Zhejiang Medical Science and Technology Projects under Grant 20143675, and in part by Hangzhou Huazheng Medical Equipment Company Ltd. under Grant 491030-121602. (Corresponding author: Huafeng Liu.)

- T. Wang and H. Liu are with the State Key Laboratory of Modem Optical Instrumentation, Zhejiang University, Hangzhou 310027, China (e-mail: ting wang@ziu.edu.cn; liuhf@ziu.edu.cn).
- K. Nakamoto is with Hamamatsu Photonics K.K., Hamamatsu 4348601, Japan (e-mail: katsuhiro.nakamoto@crl.hpk.co.jp).
- H. Zhang is with the Shenzhen Institute of Advanced Technology, Shenzhen 518055, China (e-mail: hy.zhang@siat.ac.cn). Color versions of one or more of the figures in this paper are available
- online at http://ieeexplore.ieee.org. Digital Object Identifier 10.1109/TNS.2017.2750199

0018-9499 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more informa

Authorized licensed use limited to: Zhejiang University. Downloaded on June 25,2024 at 05:55:47 UTC from IEEE Xplore. Restrictions apply

Topological Charge Detection Using Generalized Contour-Sum Method from Distorted Donut-Shaped Optical Vortex Beams: Experimental Comparison of Closed Path Determination Methods

Daiyin Wang 1, Hongxin Huang 2,*, Haruyoshi Toyoda 2 and Huafeng Liu 1,*

- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; wangdaiyin@126.com
- ² Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu 434-8601, Japan; tovoda@crl.hpk.co.ip
- Correspondence: huanghx@crl.hpk.co.jp (H.H.); liuhf@zju.edu.cn (H.L.)

Received: 30 August 2019; Accepted: 17 September 2019; Published: 20 September 2019

Featured Application: This study will be valuable to researchers working in optical metrology and in the diagnosis of optical communication links through long-distance free-space propagation.

Abstract: A generalized contour-sum method has been proposed to measure the topological charge (TC) of an optical vortex (OV) beam using a Shack-Hartmann wavefront sensor (SH-WFS). Moreover, a recent study extended it to be workable for measuring an aberrated OV beam. However, when the OV beam suffers from severe distortion, the closed path for circulation calculation becomes crucial. In this paper, we evaluate the performance of five closed path determination methods, including watershed transformation, maximum average-intensity circle extraction, a combination of watershed transformation and maximum average-intensity circle extraction, and perfectly round circles assignation. In the experiments, we used a phase-only spatial light modulator to generate OV beams and aberrations, while an SH-WFS was used to measure the intensity profile and phase slopes. The results show that when determining the TC values of distorted donut-shaped OV beams, the watershed-transformed maximum average-intensity circle method performed the best, and the maximum average-intensity circle method and the watershed transformation method came second and third, while the worst was the perfect circles assignation method. The discussions that explain our experimental results are also given.

Keywords: wavefront sensor; spatial light modulator; contour-sum method; topological charge; orbital angular momentum

Recently, optical vortex (OV) beams, owing to their unique properties, have attracted more and more interest and have been utilized in a wide range of fields-from scientific research to advanced technology applications, such as optical communications [1-4], optical metrology [5-7], and optical trapping and manipulation [8-10]. Many specialties of OV beams are due to their phase singularity in the wavefront function, where the intensity drops to zero and the phase is undefined [11,12]. Moreover, the phase along a closed path enclosing the singularity point varies from 0 to $2n\pi$, where n is an integer known as the topological charge (TC) or the orbital angular momentum (OAM). OV beams with different TC values perform diverse characteristics and consequently are used as information carriers in state-of-art optical communication systems, which are used to generate sufficient force to

Appl. Sci. 2019, 9, 3956; doi:10.3390/app9193956

www.mdpi.com/journal/applsci

Vol. 27, No. 5 | 4 Mar 2019 | OPTICS EXPRESS 7803

Optics EXPRESS

Aberration-resistible topological charge determination of annular-shaped optical vortex beams using Shack-Hartmann wavefront sensor

Daiyin Wang, 1 Hongxin Huang, 2,3 Yoshinori Matsui, 2 Hiroshi TANAKA, ² HARUYOSHI TOYODA, ² TAKASHI INOUE, ² AND HUAFENG LIU^{1,4}

 $^{I}State\;Key\;Laboratory\;of\;Modern\;Optical\;Instrumentation,\;Zhejiang\;University,\;Hangzhou,\;Zhejiang,\;Instrumentation,\;Zhejiang\;University,\;Hangzhou,\;Hangzhou,\;Hangzho$ 310027, China

²Central Research Laboratory, Hamamatsu Photonics K. K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka, 434-8601, Japan

huanghx@crl.hpk.co.jp

4liuhf@zju.edu.cn

Abstract: Determining topological charge (TC) of optical vortex (OV) beams is important for many applications, such as optical measurement and information transmission through longdistance propagation. In this application, the OV beams usually have an annular intensity profile at the receiving end and are inevitably distorted by aberrations during propagation. In this paper, we propose a simple, direct, and aberration-resistible method to determine the TC value of this annular-shaped OV beam with a Shack-Hartmann wavefront sensor (SH-WFS). Our approach involves finding a closed-path along the annular intensity distribution ridge, and then determining the TC value by a discrete circulation calculation with only the phaseslope vectors along the closed-path. Verification experiments were performed using a phaseonly spatial light modulator to generate OV beams and aberrations, while SH-WFS to measure the intensity profile and phase-slopes. The results show that our method can determine the TC value of up to ± 20. The robustness against wavefront aberration and simulated atmospheric turbulence was evaluated. We also verified the proposed closed-path's superiority to other circular closed-paths for TC determination.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

An optical vortex (OV) beam is a special optical field containing one or several singular points, where the optical phase is undefined, and the intensity is zero [1,2]. Around such a point, the optical phase distributes helically; that is, the phase along a closed-path enclosing the singular point changes from 0 to $2n\pi$, where n is an integer and termed as topological charge (TC). OV beams have many special properties and consequently an enormous range of applications in scientific researches and information technologies. Because OV beams carry optical angular momentum (OAM), they have been used in optical manipulation to rotate micro-particles [3] and the optical manipulations with OV beam are expected to be powerful tools for studying the non-equilibrium nature of biological molecules under torque [4]. Another important feature is that different OV modes, meaning OV beams with different TC values, are orthogonal with each other, and therefore can be efficiently separated. Accordingly they are used as independent information channels in optical communication and interconnects [5-8] as well as in optical metrology [9-11]. OV beams are also utilized in stimulated emission depletion (STED) microscopy for super resolution imaging of bio-tissues [12]. In most of the above-mentioned applications [3,7-9,11,12], the OV beams usually have annular-shaped intensity profiles. Thereby, the measurement and characterization of this annular-shaped OV beam directly is important for these applications.

#357494 Journal © 2019 https://doi.org/10.1364/OE.27.007803

Received 11 Jan 2019; revised 20 Feb 2019; accepted 21 Feb 2019; published 1 Mar 2019

Check for updates

Original Article

ICBFM

Imaging mitochondrial complex I activation during a vibrotactile stimulation: A PET study using [18F] **BCPP-EF** in the conscious monkey brain

Journal of Cerebral Blood Flow & Metabolism 2020, Vol. 40(12) 2521–2532 © The Author(s) 2020 Article reuse guidelines sagepub.com/journals-permissions DOI: 10.1177/0271678X19900034 \$SAGE

Jingwan Fang¹, Hiroyuki Ohba², Fumio Hashimoto², Hideo Tsukada², Feiyan Chen¹ and Huafeng Liu³

Abstract

In order to evaluate the capability of 2-tert-butyl-4-chloro-5-{6-[2-(2-[18F]fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([¹⁸F]BCPP-EF), a novel positron emission tomography (PET) probe for mitochondrial complex I (MC-I) activity, to assess neuronal activation, an activation PET study was conducted in the conscious monkey brain with a continuous unilateral vibrotactile stimulation. PET scans with [150]H₂O, [18F]BCPP-EF, or 2-deoxy-2-[18F]fluoroglucose ([18F]FDG) were conducted under: (1) resting conditions; (2) a continuous vibration stimulation; (3) a continuous vibration stimulation after 15-min pre-vibration; and (4) a continuous vibration stimulation after 30-min pre-vibration. The contralateral/ipsilateral ratio (CIR) in the somatosensory cortex showed significant increases in the uptake of [15O]H2O, [18F]BCPP-EF, and [18F]FDG with the vibration stimulation. The longer pre-vibration duration induced significantly lower CIR in regional cerebral blood flow (rCBF) measured using $\Gamma^{15}O|H_2O$, whereas it did not affect the CIR in [18F]BCPP-EF or the regional cerebral metabolic rate of glucose (rCMRglc) measured using [18F]FDG 30-60 min after the injection. These results suggest that the [18F]BCPP-EF response in the later phase of scans was not influenced by the increase in rCBF, indicating the capability of [18F]BCPP-EF to detect acute changes in MC-I activity induced by neuronal activation. However, the metabolic shift from glycolysis to oxidation was not observed under the stimulation used here.

Keywords

Glycolysis, mitochondrial complex I, monkey brain, neuronal activation, regional cerebral blood flow

Received 10 September 2019; Revised 11 November 2019; Accepted 8 December 2019

Introduction

Mitochondria are crucial organelles for oxidative metabolism in eukaryotic cells. The electron transport chain (ETC), which is located on the inner membrane of mitochondria and consists of mitochondria complexes I to V, is the site for oxidative phosphorylation (OXPHOS) and aerobic adenosine triphosphate (ATP) production. Mitochondrial complex I (MC-I; NADHubiquinone oxidoreductase, EC 1.6.5.3) is the first and largest enzyme in the ETC, catalyzing electron transfer from NADH to ubiquinone.1 Dysfunctions in MC-I in brain cells lead to neurodegenerative diseases such as stroke and Alzheimer's and Parkinson's diseases. To obtain a better understanding of the metabolic role of MC-I in the pathology of these diseases using positron

emission tomography (PET), we developed a novel PET probe, 2-tert-butyl-4-chloro-5-{6-[2-(2-[18F]fluoroethoxy)-ethoxyl-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF), to image MC-I activity.2

¹Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China

²Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka,

³State Key Laboratory of Modern Optical Instrumentation, Department. of Optical Engineering, Zhejiang University, Hangzhou, China

Corresponding author:

Huafeng Liu, Department of Optical Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.

IOP Publishing

Phys Med Riol 68 (2023) 015011

https://doi.org/10.1088/1361-6560/aca951

Physics in Medicine & Biology

Simulation study of a brain PET scanner using TOF-DOI detectors equipped with first interaction position detection

Yingying Li 1,2, Mitsuo Watanabe3, Takashi Isobe3, Kibo Ote3 , Aoi Tokui3, Tomohide Omura3 and Huafeng Liu1,* @

- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, People's Republic of China
- Central Research Laboratory, Hamamatsu Photonics K. K., Japan
- Author to whom any correspondence should be addressed.

E-mail: liuhf@zju.edu.cn

Keywords time-of-flight, depth-of-interaction, brain-PET, multi-pixel-photon-counter, silicon-photomultiplier, first-interaction-posi-

Supplementary material for this article is available online

Abstract

Objective. The aim of this study is to evaluate the performance characteristics of a brain positron emission tomography (PET) scanner composed of four-layer independent read-out time-of-flight depth-ofinteraction (TOF-DOI) detectors capable of first interaction position (FIP) detection, using Geant4 application for tomographic emission(GATE). This includes the spatial resolution, sensitivity, count rate capability, and reconstructed image quality. Approach. The proposed TOF-DOI PET detector comprises four layers of a 50 × 50 cerium-doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) scintillator array with 1 mm pitch size, coupled to a 16 × 16 multi-pixel photon counter array with 3.0 mm × 3.0 mm photosensitive segments. Along the direction distant from the center field-of-view (FOV), the scintillator thickness of the four layers is 2.5, 3, 4, and 6 mm. The four layers were simulated with a 150 ps coincidence time resolution and the independent readout make the FIP detection capable. The spatial resolution and imaging performance were compared among the true-FIP, winner-takes-all (WTA) and front-layer FIP (FL-FIP) methods (FL-FIP selects the interaction position located on the front-most interaction layer in all the interaction layers). The National Electrical Manufacturers Association NU 2-2018 procedure was referred and modified to evaluate the performance of proposed scanner. Main results. In detector evaluation, the intrinsic spatial resolutions were 0.52 and 0.76 mm full width at half-maximum (FWHM) at 0° and 30° incident γ -rays in the first layer pair, respectively. The reconstructed spatial resolution by the filter backprojection (FBP) achieved sub-millimeter FWHM on average over the whole FOV. The maximum true count rate was 207.6 kcps at 15 kBq ml⁻¹ and the noise equivalent count rate (NECR_2R) was 54.7 kcps at 6.0 kBq ml⁻¹. Total sensitivity was 45.2 cps kBq⁻¹ and 48.4 cps kBq⁻¹ at the center and 10 cm off-center FOV, respectively. The TOF and DOI reconstructions significantly improved the image quality in the phantom studies. Moreover, the FL-FIP outperformed the conventional WTA method in terms of the spatial resolution and image quality. Significance. The proposed brain PET scanner could achieve sub-millimeter spatial resolution and high image quality with TOF and DOI reconstruction, which is meaningful to the clinical oncology research. Meanwhile, the comparison among the three positioning methods indicated that the FL-FIP decreased the image degradation caused by Compton scatter more than WTA.

1. Introduction

Positron emission tomography (PET) is an essential in vivo molecular imaging technique and plays a key role in research and clinical studies. PET scanners are widely used in clinical studies and many efforts have been made to

© 2022 Institute of Physics and Engineering in Medicine

nature communications

https://doi.org/10.1038/s41467-023-37297-z

Solution-grown Bil/Bil₃ van der Waals heterostructures for sensitive X-ray detection

Received: 13 July 2022

Accepted: 1 March 2023

Published online: 23 March 2023

Check for updates

Renzhong Zhuang^{1,2}, Songhua Cai 3, Zengxia Mei¹, Huili Liang¹, Ningjiu Zhao¹, Haoran Mu¹, Wenzhi Yu^{1,4}, Yan Jiang¹, Jian Yuan¹, Shuping Lau ³, Shiming Deng⁵, Mingyue Han¹, Peng Jin [⊙]⁶, Cailin Wang [⊙]¹, Guangyu Zhang [⊙]^{1,4} ⊗ &

X-ray detectors must be operated at minimal doses to reduce radiation health risks during X-ray security examination or medical inspection, therefore requiring high sensitivity and low detection limits. Although organolead trihalide perovskites have rapidly emerged as promising candidates for X-ray detection due to their low cost and remarkable performance, these materials threaten the safety of the human body and environment due to the presence of lead. Here we present the realization of highly sensitive X-ray detectors based on an environmentally friendly solution-grown thick Bil/Bil₃/Bil (Bi₃I₂) van der Waals heterostructure. The devices exhibit anisotropic X-ray detection response with a sensitivity up to $4.3 \times 10^4 \,\mu\text{C Gy}^{-1} \,\text{cm}^{-2}$ and a detection limit as low as 34 nGy s⁻¹. At the same time, our Bi_xI_y detectors demonstrate high environmental and hard radiation stabilities. Our work motivates the search for new van der Waals heterostructure classes to realize high-performance Xray detectors and other optoelectronic devices without employing toxic

ticular importance to reduce the risks of cancer caused by repeated exposure to ionizing radiation in the fields of physical examination such as medical diagnosis and security inspection^{1,2}. Therefore, it promotes the exploration of X-ray detectors to improve the sensitivity and reduce the detection limit. High-sensitivity and low detection limit require the X-ray detectors to possess high resistivity, high attenuation coefficient, low electron-hole formation energy (ε_{pair}) , and excellent charge collection ability. Here, "high resistivity" results in the selection of materials with a large bandgap to reduce the temperature-induced carrier excitation. Whereas "low ε_{pair} " needs the target materials with a small bandgap to

High-sensitive X-ray detection requiring a low-dose rate is of par- generate, more electron-hole pairs by a single X-ray photon. Therefore, a medium handgap between 1.5 and 3.0 eV is considered appropriate to balance the Epair and resistivity3. Nowadays, excellent semiconductors such as metal halide perovskites and CZT in forms of single crystal, polycrystalline or thick film with medium bandgap have been developed for high-sensitive room temperature X-ray detection. However, they are still limited by toxicity, stability, or

> Apart from the mentioned semiconductors, Bil3 is also an alternatively promising material with a medium bandgap. As reported, Bil3 is a 2D-layered semiconductor that belongs to R3 -148 space group with a strongly anisotropic crystal structure

1 Songshan Lake Materials Laboratory, 523808 Dongguan, Guangdong, P. R. China. 2 Fujian Provincial Key Laboratory of Welding Quality Intelligent Evaluation, Longyan University, Longyan, Fujian, P. R. China. ³Department of Applied Physics, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, P. R. China. Anstitute of Physics. Chinese Academy of Science, 100190 Beijing, P. R. China. HAMAMATSU Photonics (China) Co., LTD., 100020 Beijing, P. R. China, 6 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zheijang University, Hangzhou, Zheijang, China, e-mail: gyzhang@sslab.org.cn; linshenghuang@sslab.org.cn

Nature Communications (2023)14:1621

Optical Review (2024) 31:247-257 https://doi.org/10.1007/s10043-024-00871-x

SPECIAL SECTION: REGULAR PAPER

The Fourteenth Japan-Finland Joint Symposium on Optics in Engineering (OIE'23), Hamamatsu, Japan

Reservoir computing for a MEMS mirror-based laser beam control on FPGA

Yuan Wang¹ · Keisuke Uchida² · Munenori Takumi² · Katsuhiro Ishii^{2,3} · Ken-ichi Kitayama^{2,4}

Received: 31 October 2023 / Accepted: 1 February 2024 / Published online: 24 April 2024 © The Optical Society of Japan 2024

In this paper, a small-world network-based reservoir computing (SWN-RC) is introduced to a micro-electromechanical system (MEMS) mirror-based laser scanner to achieve high-accuracy and low-delay laser trajectory control. The benefits of SWN-RC are confirmed through a comprehensive simulation, comparing it with reservoir computing (RC) based on regular and random networks. Subsequently, the RC control module is designed and implemented on a cost-optimized field-programmable gate array (FPGA). To balance the resource consumption and the processing delay, we use a half-parallel architecture for the large-scale matrix multiplications. In addition, the weight matrices of the RC are expressed by the 12-bit fixed-point data, which sufficiently suppresses the quantization noise. Furthermore, we simplify the activation function as a piecewise linear function and store the values in the read-only memory (ROM), resulting in a 76.6% reduction in ROM utilization. Finally, the SWN-RC, regular-RC, and random-RC control modules are implemented on the FPGA board and experimentally tested in the MEMS mirror-based laser scanner system. To the authors' knowledge, it is the first reported RC-based MEMS mirror control system implemented on FPGA. In addition, the PID control is also tested as a baseline experiment. The results indicate that the RC control greatly outperforms the PID control with a 57.18% reduction in delay and over a 58.83% reduction in root mean square error (RMSE). Among the RC controls, the SWN-RC exhibits the best performance than the others. The SWN-RC achieves a further 14.03% and 12.42% reduction in RMSE compared to regular-RC and random-RC, respectively.

Keywords Reservoir computing (RC) · Field-programmable gate array (FPGA) · Small-world network (SWN) · Control

1 Introduction

Micro-electromechanical system (MEMS) mirror-based laser scanners are widely utilized in the fields of LiDAR due to their compact size, high speed, and low cost, compared to the other types of laser scanner type [1]. However, the MEMS system control is a complex project because factors such as component aging and thermal derating tend to change its behavior and performance [2]. Conventional proportional-integral-derivative (PID) control works well when the loop is linear, while the performance degrades greatly in nonlinear systems. Compared to the PID control, the neural network-based control approach can well address the nonlinear problem in MEMS systems [3], which has been employed in numerous applications [4-6]. Reservoir computing (RC) has been demonstrated to be effective for model-free prediction of nonlinear and chaotic systems

- Yuan Wang vuan.wang@hpk.co.ip
- College of Optical Science and Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
- Hamamatsu Photonics K. K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601, Japan
- The Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu-cho, Hishi-ku, Hamamatsu, Shizuoka 431-1202, Japan
- National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan

Phys. Med. Biol. 69 (2024) 115047 IOP Publishing

https://doi.org/10.1088/1361-6560/ad4c4d

Physics in Medicine & Biology

REVISED 20 April 2024

ACCEPTED FOR PUBLICATION

Transformer-CNN hybrid network for improving PET time of flight

Xuhui Feng^{1,3}, Amanjule Muhashi^{1,3}, Yuya Onishi², Ryosuke Ota² and Huafeng Liu^{1,*}

- 1 The State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- The Central Research Laboratory Hamamatan Photonics K K 5000 Hirakuchi Hamakita ku Hamamatan 434,8601 Jana
- These authors contributed equally to this work.
- * Author to whom any correspondence should be addressed.

E-mail: liuhf@zju.edu.cn

Keywords: TOF-PET, CTR, transformer, deep learning

Abstract

Objective. In positron emission tomography (PET) reconstruction, the integration of time-of-flight (TOF) information, known as TOF-PET, has been a major research focus. Compared to traditional reconstruction methods, the introduction of TOF enhances the signal-to-noise ratio of images. Precision in TOF is measured by full width at half maximum (FWHM) and the offset from ground truth, referred to as coincidence time resolution (CTR) and bias. Approach. This study proposes a network combining transformer and convolutional neural network (CNN) to utilize TOF information from detector waveforms, using event waveform pairs as inputs. This approach integrates the global self-attention mechanism of Transformer, which focuses on temporal relationships, with the local receptive field of CNN. The combination of global and local information allows the network to assign greater weight to the rising edges of waveforms, thereby extracting valuable temporal information for precise TOF predictions. Experiments were conducted using lutetium vttrium oxyorthosilicate (LYSO) scintillators and silicon photomultiplier (SiPM) detectors. The network was trained and tested using the waveform datasets after cropping. Main results, Compared to the constant fraction discriminator (CFD), CNN, CNN with attention, long short-term memory (LSTM) and Transformer, our network achieved an average CTR of 189 ps, reducing it by 82 ps (more than 30%), 13 ps (6.4%), 12 ps (6.0%), 16 ps (7.8%) and 9 ps (4.6%), respectively. Additionally, a reduction of 10.3, 8.7, 6.7 and 4 ps in average bias was achieved compared to CNN, CNN with attention, LSTM and Transformer. Significance. This work demonstrates the potential of applying the Transformer for PET TOF estimation using real experimental data. Through the integration of both CNN and Transformer with local and global attention, it achieves optimal performance, thereby presenting a novel direction for future research in this field

1. Introduction

Time-of-flight positron emission tomography (TOF-PET) is a medical imaging technique that measures the time difference between two photons emitted from a positron annihilation event. The time difference provides information about the location of the event along the line of response (LOR) between two detectors. TOF-PET derives benefits from temporal information (Conti 2009), resulting in significantly heightened sensitivity compared to non-TOF-PET reconstructions that do not utilize temporal information. This is attributed to its capability to significantly enhance the signal-to-noise ratio (SNR) of images (Conti and Bendriem 2019), an enhancement that can be quantified by the formula derived in (Tomitani 1981, Gundacker et al 2014):

© 2024 Institute of Physics and Engineering in Medicine

2.研究生在校期间主要奖励

● 18 位学生获国家奖学金: 王毅、王佳、胡映天、文一章、庞凯、 程瑞琦、陈浩、杨恺伦、林书妃、李华兵、鲍宇涵等

当前位置: 首页 | 学生工作 | 通知公告

【研究生评奖评优】关于光电学院2021-2022研究生国家奖学金和研究生荣誉称号预评结果的公示

发布者: 吕成祯 发布时间: 2022-10-13 浏览次数: 122

各位同学:

经过个人申报,研究所评选,学院审核,现将光电学院2021-2022学年研究生国家奖学金和研究生荣誉称号预评结果如下:

■2021-2022光电学院研究生国奖&荣誉称号汇总(更新).xlsx


公示截止时间到10月20日,如有问题请联系教三魏运其老师。联系电话: 0571-87951839,电子邮箱: weiyunqi@zju.edu.cn

1	姓名	奖学金	类型	研究所	
2	罗晶	国家奖学金	博	电磁波	
3	陈耿鑫	国家奖学金	博	电磁波	
4	沈凡琪	国家奖学金	博	光电工程	
5	王佳	国家奖学金	博	光学工程	
6	赵帅	国家奖学金	博	光惯	
7	钱书豪	国家奖学金	博	激光生物	
8	孙轲	国家奖学金	博	微纳	
9	费文辉	国家奖学金	硕	光学工程	
10	洪仕瀚	国家奖学金	硕	电磁波	
11	王姣姣	国家奖学金	硕	光惯	

● 12 位学生获浙江省优秀毕业生奖励: 胡映天、文一章、 王彬宇等

优秀毕业生证书

胡映入 同学:

荣获浙江省普通高等学校优秀 毕业生称号。

优秀毕业生证书

女一章同学:

荣获浙江省普通高等学校优秀 毕业生称号。

优秀毕业生证书

王彬宇同学:

荣获浙江省普通高等学校优秀 毕业生称号。

● 李玥-浙大优秀博士论文

● 16 位学生获国际学术会议奖:崔佳楠、穆礼德、王博、徐鹏程、 刘之源、胡映天等

主 题:	2019 IEEE NSS/MIC/RTSD / Trainee Gran	t Program			
	"2019 IEEE NSS/MIC/RTSD - EventClass GmbH" <ieee@eventclass.com> 2019-7-17 4:30:</ieee@eventclass.com>				
	"Bo Wang" <wb33@zju.edu.cn></wb33@zju.edu.cn>				
	Please click here if the e-mail below is not displayed correctly.				
2019 IEEE NSS/MIC/RTS					
	2019 IEEE Nuclear Science Symposium and Medical Imaging Conference 26th International Symposium on Room Temperature Semiconductor X-Ray & Gamma-Ray Detectors				
	26 October - 2 November 201	9, Manchester Central Convention Centre, UK			
Dear Bo,					
It is my pleasure to inform you that you have been selected as a recipient of a 2019 IEEE NSS-MIC Trainee Grant.					
	The conference committee has decided that this year your Trainee Grant may be worth up to 500,00 GBP for a one-time credit to be applied to your expenses during the registration process.				
	Value of your voucher: up to 500,00 GBP				
Valid for:		Registration fee Short Courses Workshops			
Redeem the voucher: Can only be used once at the beginning of the online- registration					
Expiration of the validity: Must be used by October 1, 2019					
Validity: The voucher is valid only for you and cannot be assigned to another person					
	Your Grant Code: 26xz3xwn				
Valid for: Bo Wang					

3/10/2021 Print Message			
Subject:	2019 IEEE NSS/MIC/RTSD / Trainee Grant Program		
From:	r: "2019 IEEE NSS/MIC/RTSD - EventClass GmbH" <ieee@eventclass.com> Jul 17, 2019 4:19:0</ieee@eventclass.com>		
To:	To: "Xu Pengcheng" <3110102690@zju.edu.cn>		
	Please clic	k here if the e-mail below is not displayed correctly.	
2019 IEEE NSS/MIC/RTS	D 2019 IEEE Nuclear Scie	nce Symposium and Medical Imaging C on Room Temperature Semiconductor X-Ray & Gamr	
	26 October - 2 November 2019, Manchester Central Convention Centre, UK		
FIEEE	EEE Dear Xu,		
	It is my pleasure to inform you that you have been selected as a recipient of a 2019 IEEE NSS-MIC Trainee Grant.		
		decided that this year your Trainee Grant may be wedit to be applied to your expenses during the regist	
	Value of your voucher:	up to 500,00 GBP	
	Valid for:	Registration fee Short Courses Workshops	
	Redeem the voucher:	Can only be used once at the beginning of th registration	e online-
Expiration of the validity:		Must be used by October 1, 2019	
	Validity:	The voucher is valid only for you and cannot another person	be assigned to
	Your Grant Code:	x4v2u8f3	

MICCAI 2019
The 22nd International Conference on Medical Image Computing and Computer Assisted Intervention 13-17 October, 2019
Shenzhen, China

GRADUATE STUDENT TRAVEL AWARD

presented to

Zhiyuan Liu

Dinggang Shen

Tianming Liu

(三) 凸显特色,积极服务国家文战略

1.毕业研究生主要奖励和荣誉

● 陈舒杭-工程硕士实习实践优秀成果获得者

全国工程专业学位研究生教育指导委员会中国学位与研究生教育学会工程专业学位工作委员会

关于公布获得第四届"工程硕士实习实践优秀成果获得者" 荣誉称号名单的通知

工程教指委[2018] 4号

有关培养单位:

根据全国工程专业学位研究生教育指导委员会(以下简称教指委)"关于工程硕士实习实践优秀成果获得者评选办法",经专家组评审,教指委审定与公示,共有101名工程硕士获得第四届"工程硕士实习实践优秀成果获得者"荣誉称号。现对获得荣誉称号的人员名单予以公布(名单见附件)。

附件: 获得第四届"工程硕士实习实践优秀成果获得者"荣 誉称号的名单

抄报: 国务院学位委员会办公室

抄送: 教指委全体委员、各工程领域教育协作组

全国工程专业学位研究生教育指导委员会/中国学位与研究生教育学会工程专业学位工作委员会研书处 地址、北京市 清华大学研究生版 鄉稿; 100084 电话; 010-62782041 传真; 010-62775555 官府; www.meng.edu.cn 电子部件; see@singshau.edu.cn

培养单位名称	工程领域	姓 名
南京航空航天大学	材料工程	聂丽丽
南京航空航天大学	航空工程	江 华
南京航空航天大学	航空工程	刘亚非
南京航空航天大学	车辆工程	谷霄月
南京理工大学	光学工程	杨彬
南京理工大学	动力工程	杨后文
南京理工大学	电子与通信工程	陈相治
河海大学	水利工程	张伟伟
河海大学	水利工程	蒋昊炜
江南大学	轻工技术与工程	周 稳
南京信息工程大学	电子与通信工程	张强
浙江大学	机械工程	薛光怀
浙江大学	光学工程	陈舒杭
浙江大学	光学工程	李 安
浙江大学	电气工程	石佳蒙
浙江大学	电子与通信工程	章剑波
浙江大学	生物医学工程	高 园
中国计量大学	仪器仪表工程	白 帆
中国科学技术大学	材料工程	谢晓滨
安徽工业大学	冶金工程	吴雪健
山东大学	电气工程	续 昕

3

● 林桢-浙江省科技进步奖三等奖、浙江省能耗双控工作成绩突出个 人通报表扬

浙江省人民政府办公厅

浙江省人民政府办公厅关于表扬 2021 年全省 能耗双控工作成绩突出集体和个人的通报

各市、县(市、区)人民政府,省政府直属各单位:

"十四五"以来,全省上下深入贯彻落实党中央、国务院和省委、省政府决策部署,坚定不移走能耗双控倒逼经济转型升级道路,各相关部门相互协作、齐抓共管,节能领域干部职工勤奋工作、履职尽责,社会各界大力支持、积极参与,高质量推进我省经济社会绿色低碳发展,涌现出一批成绩突出集体和个人。为树立典型、推动工作,经省政府同意,决定对省统计局能源和环境统计处等10个集体和邵金泉等30名个人予以通报表扬。

希望受表扬的集体和个人珍惜荣誉,再接再厉,再创佳绩。各地、各单位和广大干部职工要以成绩突出集体和个人为榜样,进一步提高站位,创新举措,加快推进能源绿色低碳发展,为我省推进"两个先行"作出更大贡献。

附件:2021年全省能耗双控工作成绩突出集体和个人名单

浙江省人民政府办公厅 2022年11月21日 附件

2021 年全省能耗双控工作成绩突出 集体和个人名单

一、成绩突出集体(10个)

省统计局能源和环境统计处

杭州市临平区税务局

国网宁波供电公司

温州市发展改革委

湖州市发展改革委

温岭市发展改革局

丽水市能源监测中心 浙江嘉化能源化工股份有限公司

浙江佳人新材料有限公司

横店集团东磁股份有限公司

二、成绩突出个人(30名)

邵金泉 省财政厅

张朝英 省统计局

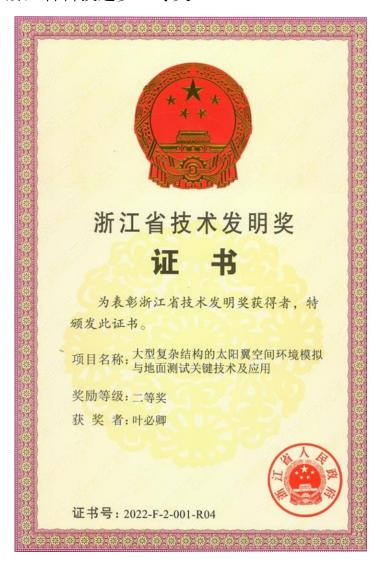

徐冰烨 省生态环境监测中心

林 桢 省计量科学研究院

- 2 -

● 张冰-教育部科学技术进步奖二等奖

● 文一章-中国仪器仪表学会教育教学成果奖



● 卢乾波-中国发明协会一等奖、中国航空学会科学技术二等奖



● 叶必卿-浙江省科技进步二等奖

● 潘孙强-浙江省科技进步三等奖、中纺联科科技进步二等奖、浙江 省市场监管系统学科带头人

● 陈哲敏-省科技进步奖(2项)

